Suppr超能文献

用于神经再生的导电颗粒支架原位磁电生成微小RNA海绵及无线电刺激

In Situ Magnetoelectric Generation of miRNA Sponges and Wireless Electric Stimulus by Conductive Granular Scaffolds for Nerve Regeneration.

作者信息

Pan Wan-Chi, Lin Ya-Hui, Iao Hoi Man, Chang Yun-Hsuan, Chen Yin-Hsu, Liu Hsiu-Ching, Tran Ngoc-Tri, Lee I-Chi, Lien Hui-Wen, Hwang Eric, Chu Li-An, Hu Shang-Hsiu

机构信息

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.

Brain Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan.

出版信息

Adv Mater. 2025 Aug;37(32):e2500650. doi: 10.1002/adma.202500650. Epub 2025 May 29.

Abstract

Electronic signaling and microRNA (miRNA) regulation play pivotal roles in determining neuronal cell fate and promoting brain recovery. Despite this, clinical advancements are hindered by the limited availability of tools for spatiotemporal electrical signaling and non-viral gene modulation in neurons in vivo. In this study, a conductive granular scaffold (cGRAS) that doubles as an antenna and neuronal gene delivery agent for targeted miRNA regulation of nerve repair in traumatic brain injury (TBI) is developed. The inherent features of granular scaffolds reduce the inflammation and glial scarring in TBI by mitigating activated microglia and stellate cells. Upon irradiation with an external alternating magnetic field (AMF), the "electromagnetic messenger" induces electrical stimulation to restore brain function and promotes temporal electroporation. This process, together with mechanotransduction capability of cGRAS, enhances the delivery and formation of miRNA sponges both in vitro and in vivo, thereby reducing the overexpression of miR6263, which is significantly upregulated upon neuronal injury. In the whole brain imaging analysis, suppression of inflammation, angiogenesis around the TBI cavity, and infiltration of newborn neurons in the injured area are observed after in situ magnetoelectric formation of miRNA sponges and wireless electric stimulus, leading to improved brain function and behavioral recovery. Overall, this cGRAS represents a potentially innovative and versatile tool for clinical neuronal regeneration engineering.

摘要

电子信号传导和微小RNA(miRNA)调节在决定神经元细胞命运和促进脑恢复方面发挥着关键作用。尽管如此,由于体内神经元时空电信号传导和非病毒基因调节工具的可用性有限,临床进展受到阻碍。在本研究中,开发了一种导电颗粒支架(cGRAS),它兼具天线和神经元基因递送剂的功能,用于对创伤性脑损伤(TBI)中的神经修复进行靶向miRNA调节。颗粒支架的固有特性通过减轻活化的小胶质细胞和星状细胞来减少TBI中的炎症和胶质瘢痕形成。在外部交变磁场(AMF)照射下,“电磁信使”诱导电刺激以恢复脑功能并促进瞬时电穿孔。这一过程与cGRAS的机械转导能力一起,在体外和体内增强了miRNA海绵的递送和形成,从而降低了神经元损伤时显著上调的miR6263的过表达。在全脑成像分析中,在原位磁电形成miRNA海绵和无线电刺激后,观察到TBI腔周围的炎症抑制、血管生成以及损伤区域新生神经元的浸润,从而导致脑功能改善和行为恢复。总体而言,这种cGRAS代表了一种潜在的创新且通用的临床神经元再生工程工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验