Suppr超能文献

肺癌精准肿瘤学通用计算推理模型的真实世界性能分析

Real-world performance analysis of a universal computational reasoning model for precision oncology in lung cancer.

作者信息

Dirner Anna, Kormos Dóra, Lakatos Dóra, Bolyácz Márton, Kocsis-Steinbach Mária, Kalmár Gábor György, Tihanyi Dóra, Takács Ákos, Boldizsár Ákos, Kardos Viktor, Szalkai-Dénes Réka, Vodicska Barbara, Várkondi Edit, Déri Júlia, Pajkos Gábor, Mathiász Dóra, Vályi-Nagy István, Schwáb Richárd, Kamal Maud, Rolfo Christian, Dudek Arkadiusz Z, Le Tourneau Christophe, Dóczi Róbert, Urbán László, Peták István

机构信息

Genomate Health Inc, Cambridge, MA, USA.

Semmelweis University, Doctoral School, Budapest, Hungary.

出版信息

NPJ Precis Oncol. 2025 May 30;9(1):159. doi: 10.1038/s41698-025-00943-4.

Abstract

Tumors harbor multiple genetic alterations, yet treatment decisions are commonly based on single biomarkers, leading to underutilization of genomic information by comprehensive molecular tests, uncertainty in clinical practice, and frequent treatment failures. Although molecular tumor boards can assist personalized treatments, this process is not scalable or standardized, resulting in highly discordant recommendations. Validated digital solutions for personalized decision support are highly needed. The Digital Drug Assignment (DDA) system is a computational reasoning model that scores treatment options based on the full tumor genomic data. We retrospectively analyzed data of 111 lung cancer patients and found that high-score MTAs (1000≦DDA score) provided significant clinical benefit over other treatments, in terms of ORR, PFS, and OS. These results demonstrate that the DDA system is predictive of relative benefit of the various agents used in lung cancer care. Digital drug assignment can potentially address challenges with complex molecular profiles in routine clinical settings.

摘要

肿瘤存在多种基因改变,但治疗决策通常基于单一生物标志物,导致综合分子检测对基因组信息利用不足、临床实践存在不确定性且治疗失败频繁发生。尽管分子肿瘤专家委员会可协助进行个性化治疗,但该过程不可扩展或标准化,导致建议高度不一致。因此,非常需要经过验证的个性化决策支持数字解决方案。数字药物分配(DDA)系统是一种计算推理模型,可根据完整的肿瘤基因组数据对治疗方案进行评分。我们回顾性分析了111例肺癌患者的数据,发现高分多靶点治疗方案(1000≤DDA评分)在客观缓解率、无进展生存期和总生存期方面比其他治疗方案具有显著的临床益处。这些结果表明,DDA系统可预测肺癌治疗中各种药物的相对获益。数字药物分配有可能解决常规临床环境中复杂分子谱带来的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09d/12125307/20ba187da6d6/41698_2025_943_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验