Suppr超能文献

mNSF:多样本非负空间分解

mNSF: multi-sample non-negative spatial factorization.

作者信息

Wang Yi, Woyshner Kyla, Sriworarat Chaichontat, Stein-O'Brien Genevieve, Goff Loyal A, Hansen Kasper D

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Genome Biol. 2025 Jun 2;26(1):149. doi: 10.1186/s13059-025-03601-x.

Abstract

Analyzing multi-sample spatial transcriptomics data requires accounting for biological variation. We present multi-sample non-negative spatial factorization (mNSF), an alignment-free framework extending single-sample spatial factorization to multi-sample datasets. mNSF incorporates sample-specific spatial correlation modeling and extracts low-dimensional data representations. Through simulations and real data analysis, we demonstrate mNSF's efficacy in identifying true factors, shared anatomical regions, and region-specific biological functions. mNSF's performance is comparable to alignment-based methods when alignment is feasible, while enabling analysis in scenarios where spatial alignment is unfeasible. mNSF shows promise as a robust method for analyzing spatially resolved transcriptomics data across multiple samples.

摘要

分析多样本空间转录组学数据需要考虑生物变异。我们提出了多样本非负空间因子分解(mNSF),这是一个无比对框架,将单样本空间因子分解扩展到多样本数据集。mNSF纳入了样本特异性空间相关性建模,并提取低维数据表示。通过模拟和实际数据分析,我们证明了mNSF在识别真实因子、共享解剖区域和区域特异性生物学功能方面的有效性。在可行的情况下,mNSF的性能与基于比对的方法相当,同时能够在空间比对不可行的情况下进行分析。mNSF有望成为一种强大的方法,用于分析多个样本的空间分辨转录组学数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验