Cohen Inessa, Taylor Richard Andrew, Xue Haipeng, Faustino Isaac V, Festa Natalia, Brandt Cynthia, Gao Emily, Han Ling, Khasnavis Siddarth, Lai James M, Mecca Adam P, Sapre Atharva Vinay, Young Juan, Zanchelli Michael, Hwang Ula
Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
Department of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, Connecticut, USA.
Alzheimers Dement. 2025 Jun;21(6):e70334. doi: 10.1002/alz.70334.
The study aimed to develop and validate the Emergency Department Dementia Algorithm (EDDA) to detect dementia among older adults (65+) and support clinical decision-making in the emergency department (ED).
In a multisite retrospective study of 759,665 ED visits, electronic health record data from Yale New Haven Health (2014-2022) were used to train three supervised and semi-unsupervised positive-unlabeled machine learning models (XGBoost, Random Forest, LASSO). A separate test set of 400 ED encounters underwent adjudicated chart review for validation.
EDDA achieved an area under the receiver-operating characteristic curve (AUROC) of 0.85 in the test set and 0.93 in the validation set. Positive-unlabeled learning improved performance. Agreement between EDDA and clinician-adjudicated dementia diagnoses was moderate (kappa = 0.50), with 17% of EDDA-positive patients having undiagnosed probable dementia.
EDDA enhances dementia detection in the ED, with potential for real-time implementation to improve patient outcomes and care transitions.
Developed a machine learning algorithm using electronic health record data to detect dementia in the emergency department (ED). Algorithm designed to balance detection accuracy with ease of ED implementation. Parsimonious model with limited but predictive variables selected for rapid ED use. Focused on real-time application, optimizing ED workflows, and clinician support. Aims to enhance ED dementia detection, patient safety, and care coordination.
本研究旨在开发并验证急诊科痴呆算法(EDDA),以检测65岁及以上老年人中的痴呆症,并支持急诊科的临床决策。
在一项对759,665次急诊科就诊的多中心回顾性研究中,使用耶鲁纽黑文医疗系统(2014 - 2022年)的电子健康记录数据来训练三种有监督和半无监督的正例未标记机器学习模型(XGBoost、随机森林、套索回归)。对400次急诊科就诊的独立测试集进行了经判定的病历审查以进行验证。
EDDA在测试集中的受试者操作特征曲线下面积(AUROC)为0.85,在验证集中为0.93。正例未标记学习提高了性能。EDDA与临床医生判定的痴呆症诊断之间的一致性为中等(kappa = 0.50),17%的EDDA阳性患者患有未确诊的可能痴呆症。
EDDA提高了急诊科对痴呆症的检测能力,具有实时实施以改善患者预后和护理过渡的潜力。
使用电子健康记录数据开发了一种机器学习算法,用于在急诊科检测痴呆症。该算法旨在在检测准确性与急诊科实施的简便性之间取得平衡。选择了具有有限但有预测性的变量的简约模型,以便在急诊科快速使用。专注于实时应用、优化急诊科工作流程和临床医生支持。旨在提高急诊科对痴呆症的检测、患者安全和护理协调。