Dreyer Frédéric A, Schneider Constantin, Kovaltsuk Aleksandr, Cutting Daniel, Byrne Matthew J, Nissley Daniel A, Kenlay Henry, Marks Claire, Errington David, Gildea Richard J, Damerell David, Tizei Pedro, Bunjobpol Wilawan, Darby John F, Drulyte Ieva, Hurdiss Daniel L, Surade Sachin, Wahome Newton, Pires Douglas E V, Deane Charlotte M
Exscientia, Oxford Science Park, Oxford, UK.
Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, Netherlands.
MAbs. 2025 Dec;17(1):2511220. doi: 10.1080/19420862.2025.2511220. Epub 2025 Jun 3.
Developing therapeutic antibodies is a challenging endeavor, often requiring large-scale screening to produce initial binders, that still often require optimization for developability. We present a computational pipeline for the discovery and design of therapeutic antibody candidates, which incorporates physics- and AI-based methods for the generation, assessment, and validation of candidate antibodies with improved developability against diverse epitopes, via efficient few-shot experimental screens. We demonstrate that these orthogonal methods can lead to promising designs. We evaluated our approach by experimentally testing a small number of candidates against multiple SARS-CoV-2 variants in three different tasks: (i) traversing sequence landscapes of binders, we identify highly sequence dissimilar antibodies that retain binding to the Wuhan strain, (ii) rescuing binding from escape mutations, we show up to 54% of designs gain binding affinity to a new subvariant and (iii) improving developability characteristics of antibodies while retaining binding properties. These results together demonstrate an end-to-end antibody design pipeline with applicability across a wide range of antibody design tasks. We experimentally characterized binding against different antigen targets, developability profiles, and cryo-EM structures of designed antibodies. Our work demonstrates how combined AI and physics computational methods improve productivity and viability of antibody designs.
开发治疗性抗体是一项具有挑战性的工作,通常需要大规模筛选以产生初始结合物,而这些结合物往往仍需针对可开发性进行优化。我们提出了一种用于发现和设计治疗性抗体候选物的计算流程,该流程结合了基于物理和人工智能的方法,通过高效的少样本实验筛选,针对不同表位生成、评估和验证具有改进可开发性的候选抗体。我们证明这些正交方法可以带来有前景的设计。我们通过在三个不同任务中针对多种SARS-CoV-2变体对少量候选物进行实验测试来评估我们的方法:(i)遍历结合物的序列景观,我们识别出与武汉株保持结合的高度序列不同的抗体,(ii)从逃逸突变中挽救结合,我们表明高达54%的设计对新的亚变体获得结合亲和力,以及(iii)在保留结合特性的同时改善抗体的可开发性特征。这些结果共同证明了一个端到端的抗体设计流程,适用于广泛的抗体设计任务。我们通过实验表征了针对不同抗原靶点的结合、可开发性概况以及设计抗体的冷冻电镜结构。我们的工作展示了人工智能和物理计算方法的结合如何提高抗体设计的生产力和可行性。