Suppr超能文献

2023 - 2024年获批的全球首创药物:突破与见解。

Global first-in-class drugs approved in 2023-2024: Breakthroughs and insights.

作者信息

Zhai Daichao, Zhang Qiuyue, Lu Xiaoling, You Qidong, Wang Lei

机构信息

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.

Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.

出版信息

Innovation (Camb). 2025 Jan 14;6(4):100801. doi: 10.1016/j.xinn.2025.100801. eCollection 2025 Apr 7.

Abstract

First-in-class (FIC) drugs are considered the main drivers of new drug discovery and have novel targets and mechanisms. The proportion of FIC drugs among new drugs provides fundamental guidance for both academic and pharmaceutical research. From a global perspective, 81 FIC drugs were approved in 2023 and 2024. Among them, small-molecule drugs account for a greater percentage (51.9%), illustrating the discovery of new chemical entities. Macromolecule drugs (48.1%), which mainly consist of antibody analogs, represent a growing trend as new biotechnology techniques have emerged. In terms of FIC drug indications, cancer remained the top priority (22.0%) with 18 FIC therapies, revealing the high patient need in this context. As for innovations regarding mechanism-based therapies, diverse enzymes were the most common FIC drugs (32.1%), with 26 novel targets identified. In this review, the performance and characteristics of FIC drug approvals in 2023 and 2024 will be presented, providing information on breakthroughs and insights for global drug discovery.

摘要

同类首创(FIC)药物被视为新药研发的主要驱动力,具有新颖的靶点和作用机制。FIC药物在新药中所占的比例为学术研究和制药研究提供了基本指导。从全球范围来看,2023年和2024年共有81种FIC药物获批。其中,小分子药物占比更大(51.9%),这表明新化学实体的发现。大分子药物(48.1%)主要由抗体类似物组成,随着新生物技术的出现,呈现出增长趋势。在FIC药物适应症方面,癌症仍然是首要重点(22.0%),有18种FIC疗法,这表明在这方面患者的需求很高。至于基于机制疗法的创新,多种酶是最常见的FIC药物(32.1%),已确定26个新靶点。在本综述中,将介绍2023年和2024年FIC药物获批的情况和特点,为全球药物研发的突破和见解提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e4f/12131005/2c517675cd0d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验