Suppr超能文献

电阻抗断层成像中肺灌注数据分割的监督学习与无监督学习

Supervised and unsupervised learning for lung perfusion data segmentation in electrical impedance tomography.

作者信息

Victor Marcus, Ribeiro Arthur, Matsumoto Monica, Xin Yi, Nova Alice, Gaulton Timothy, Cereda Maurizio

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States of America.

Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, United States of America.

出版信息

Biomed Phys Eng Express. 2025 Jun 13;11(4). doi: 10.1088/2057-1976/ade158.

Abstract

: Effective lung gas exchange relies on the balance between alveolar ventilation and perfusion, which can be disrupted in mechanically ventilated patients. Lung perfusion assessment using electrical impedance tomography (EIT) typically involves a sudden injection of a hypertonic saline solution. The large field of view provided by EIT often results in ambivalent behavior of many voxel waveforms following an indicator injection, where some exhibit indicator kinetics solely through the lungs (pulmonary), while others show passage through both the heart and lungs (hybrid). Consequently, a segmentation algorithm is essential for accurate perfusion evaluation.: Sixteen pigs (29-35 kg) were mechanically ventilated and received a 10 ml bolus of 7.5% NaCl solution to assess lung perfusion during a healthy stage and, later, in an injured stage after receiving 3.5 ml kgof HCl to induce acute lung injury. Supervised (Bagged Trees, Neural Networks, and Support Vector Machine) and unsupervised (K-means, Hierarchical, and Principal Component Analysis) learning methods were employed using 115 saline injections comprising voxel waveforms to label voxels as either hybrid or pulmonary. All segmentation methods were compared to a ground-truth mask manually drawn. A training dataset (81 injections) was used to train and cross-validate (five-fold) the supervised methods using previously extracted features. The test dataset (34 injections) was used to test both supervised and unsupervised learning algorithms.: A Principal Component Analysis (unsupervised learning) method exhibited the best overall performance, achieving 83% sensitivity, 92% specificity, 89% accuracy, and 84% dice similarity coefficient. No significant difference in performance was observed between healthy and injured subsets. Unsupervised methods consistently yielded more physiologically plausible and less scattered regions of interest.: Accurate voxel labeling is crucial for lung perfusion assessment, as it enables discrimination of the indicator passage through the heart and lungs, thereby improving the estimation of regional pulmonary blood flow.

摘要

有效的肺气体交换依赖于肺泡通气与灌注之间的平衡,而在机械通气患者中这种平衡可能会被打破。使用电阻抗断层成像(EIT)进行肺灌注评估通常需要突然注射高渗盐溶液。EIT提供的大视野常常导致指示剂注射后许多体素波形表现出矛盾的行为,其中一些仅通过肺部表现出指示剂动力学(肺型),而另一些则显示通过心脏和肺部(混合型)。因此,分割算法对于准确的灌注评估至关重要。

16头猪(体重29 - 35千克)接受机械通气,并静脉注射10毫升7.5%的氯化钠溶液,以评估健康阶段的肺灌注,随后在接受3.5毫升/千克盐酸诱导急性肺损伤后的损伤阶段进行评估。使用包含体素波形的115次盐水注射,采用监督学习方法(袋装树、神经网络和支持向量机)和无监督学习方法(K均值、层次聚类和主成分分析)将体素标记为混合型或肺型。将所有分割方法与手动绘制的真实掩码进行比较。使用先前提取的特征,训练数据集(81次注射)用于训练和交叉验证(五折)监督学习方法。测试数据集(34次注射)用于测试监督学习和无监督学习算法。

主成分分析(无监督学习)方法表现出最佳的整体性能,灵敏度达到83%,特异性达到92%,准确率达到89%,骰子相似系数达到84%。在健康子集和损伤子集之间未观察到性能上的显著差异。无监督学习方法始终产生更符合生理的且更集中的感兴趣区域。

准确的体素标记对于肺灌注评估至关重要,因为它能够区分指示剂通过心脏和肺部的情况,从而改善区域肺血流量的估计。

相似文献

1
Supervised and unsupervised learning for lung perfusion data segmentation in electrical impedance tomography.
Biomed Phys Eng Express. 2025 Jun 13;11(4). doi: 10.1088/2057-1976/ade158.
3
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
4
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.
Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
6
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
8
Inhaled mannitol for cystic fibrosis.
Cochrane Database Syst Rev. 2018 Feb 9;2(2):CD008649. doi: 10.1002/14651858.CD008649.pub3.
9
Positioning for acute respiratory distress in hospitalised infants and children.
Cochrane Database Syst Rev. 2022 Jun 6;6(6):CD003645. doi: 10.1002/14651858.CD003645.pub4.

本文引用的文献

1
Time-domain and 3D methods for lung perfusion data clustering in electrical impedance tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10782067.
2
Noise effect analysis and pulmonary perfusion estimation in electrical impedance tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. doi: 10.1109/EMBC53108.2024.10781660.
4
Electrical Impedance Tomography: A Monitoring Tool for Ventilation-induced Lung Injury.
Am J Respir Crit Care Med. 2024 Jun 15;209(12):1510-1513. doi: 10.1164/rccm.202311-2121LE.
5
Imaging the pulmonary vasculature in acute respiratory distress syndrome.
Nitric Oxide. 2024 Jun 1;147:6-12. doi: 10.1016/j.niox.2024.04.004. Epub 2024 Apr 6.
7
First-Pass Kinetics Model to Estimate Pulmonary Perfusion by Electrical Impedance Tomography During Uninterrupted Breathing.
Am J Respir Crit Care Med. 2024 May 15;209(10):1263-1265. doi: 10.1164/rccm.202310-1919LE.
9
Modulation of pulmonary blood flow in patients with acute respiratory failure.
Nitric Oxide. 2023 Jul 1;136-137:1-7. doi: 10.1016/j.niox.2023.05.001. Epub 2023 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验