Wang Fengbo, He Xiyu, Qu Guangmeng, Mamoor Muhammad, Zhai Yanjun, Wang Lu, Wang Bin, Jing Zhongxin, Kong Yueyue, Wang Dedong, Kong Lingtong, Xu Liqiang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, P.R. China.
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P.R. China.
ACS Nano. 2025 Jun 24;19(24):22330-22342. doi: 10.1021/acsnano.5c05171. Epub 2025 Jun 10.
The application of a flexible Zn-air battery (FZAB) in next-generation wearable electronics is mainly hindered by the sluggish oxygen reduction/evolution reaction (ORR/OER) and unstable Zn/electrolyte interface, particularly at relatively high-rate ability (10 mA cm). Herein, a FeN/pyridinic N-rich coordinated Fe single atom (defined as "FeN/PR-Fe SA") heterostructure is designed for optimizing the plane-symmetric Fe-4N coordination, which demonstrates outstanding bifunctional electrocatalytic performance with a low ORR/OER potential gap of 0.63 V. Experimental analyses and theoretical calculations reveal that the electronic structure of Fe single atoms, derived from the synergistic interaction between FeN with a triangular pyramidal FeN coordination and pyridinic FeN, can effectively accelerate the desorption of the *OH intermediate in the ORR and optimize the *OOH/*O adsorption behavior during the OER process. Moreover, the in situ hydrogel electrolyte (HGE) is designed on the surface of the zinc anode to limit interface water content and eliminate the formation of deposition "hot spots" for improving Zn electrochemical reversibility (203 h at 1 mA cm/1 mA h cm with Zn//Zn-symmetric battery). Therefore, the constructed FZAB based on FeN/PR-Fe SA and the in situ HGE exhibits a high maximum power density (157.3 mW cm), a long lifetime (193 h at 2 mA cm), small discharge/charge voltage polarization (0.81 V at 10 mA cm), and excellent mechanical flexibility.
柔性锌空气电池(FZAB)在下一代可穿戴电子产品中的应用主要受到缓慢的氧还原/析氧反应(ORR/OER)以及不稳定的锌/电解质界面的阻碍,尤其是在相对高电流密度(10 mA cm)的情况下。在此,设计了一种富含FeN/吡啶氮配位铁单原子(定义为“FeN/PR-Fe SA”)的异质结构,用于优化平面对称的Fe-4N配位,该结构展现出优异的双功能电催化性能,ORR/OER电位差低至0.63 V。实验分析和理论计算表明,Fe单原子的电子结构源于具有三角锥FeN配位的FeN与吡啶型FeN之间的协同相互作用,能够有效加速ORR中OH中间体的脱附,并优化OER过程中OOH/*O的吸附行为。此外,在锌阳极表面设计了原位水凝胶电解质(HGE),以限制界面水含量并消除沉积“热点”的形成,从而提高锌的电化学可逆性(在1 mA cm/1 mA h cm的锌//锌对称电池中可达203 h)。因此,基于FeN/PR-Fe SA和原位HGE构建的FZAB具有高的最大功率密度(157.3 mW cm)、长的使用寿命(在2 mA cm下为193 h)、小的充放电电压极化(在10 mA cm下为0.81 V)以及优异的机械柔韧性。