Zheng Yunan, Singh Anamika, Niu Zeqi, Marin Violeta, Young Jonathon, Richardson Paul, Hemshorn Marcus L, Cooley Richard B, Karplus P Andrew, Puvar Kedar, Warder Scott E, Vasudevan Anil, Reitsma Justin M, Mehl Ryan A
Technology & Therapeutic Platforms, AbbVie Inc., North Chicago, Illinois 60064, United States.
Department of Biochemistry and Biophysics and GCE4All Research Center, Oregon State University, Corvallis, Oregon 97331, United States.
J Am Chem Soc. 2025 Jun 25;147(25):21560-21574. doi: 10.1021/jacs.5c02741. Epub 2025 Jun 10.
A major challenge in evaluating the suitability of ∼700 known and putative E3 ligases for target protein degradation (TPD) is the lack of ligase-specific binders. Here, we use genetic code expansion (GCE) to express in living cells an E3 ligase with a site-specifically encoded, tetrazine-containing noncanonical amino acid (Tet-ncAA). Then, using click chemistry, we conjugate the incorporated Tet with a strained -cyclooctene (sTCO) tethered to a neosubstrate protein binder. The resulting covalent E3 ligase-binder construct can then be evaluated for the TPD of the neosubstrate. We first demonstrate that cereblon (CRBN) has a rather high plasticity for TPD by studying CRBN containing Tet-ncAA at a variety of surface positions. When these CRBN forms are covalently tethered to an sTCO-linker-JQ1 reagent, they all successfully recruit BRD2/4 for degradation, with the efficiency depending on the placement of the Tet-ncAA and the linker length. The results highlight the ability of this approach to map E3 surfaces and identify optimal TPD interfaces and pockets. Applying this strategy to speckle-type POZ protein (SPOP), an E3 ligase with no known specific ligand, we demonstrate that multiple sites on its surface can support TPD, revealing the potential for PROTAC-type development. This E3-ligand-free degrader (ELF degrader) platform preserves the native state of E3 ligases, enables the interrogation of any E3 surface region in live cells, and is applicable to a broad range of E3 ligases. ELF degraders represent a versatile approach to define functional degron sites, guide degrader design, and unlock new E3 ligases, those without known ligands, for therapeutic applications.
评估约700种已知和推定的E3泛素连接酶用于靶蛋白降解(TPD)的适用性时,一个主要挑战是缺乏连接酶特异性结合剂。在此,我们利用遗传密码扩展(GCE)在活细胞中表达一种带有位点特异性编码的含四嗪非标准氨基酸(Tet-ncAA)的E3泛素连接酶。然后,利用点击化学,我们将掺入的Tet与连接到新底物蛋白结合剂上的应变环辛烯(sTCO)偶联。然后可以评估所得的共价E3连接酶-结合剂构建体对新底物的TPD作用。我们首先通过研究在各种表面位置含有Tet-ncAA的CRBN,证明了cereblon(CRBN)在TPD方面具有相当高的可塑性。当这些CRBN形式与sTCO-接头-JQ1试剂共价连接时,它们都成功招募BRD2/4进行降解,效率取决于Tet-ncAA的位置和接头长度。结果突出了这种方法绘制E3表面图谱以及识别最佳TPD界面和口袋的能力。将此策略应用于斑点型POZ蛋白(SPOP),一种没有已知特异性配体的E3泛素连接酶,我们证明其表面的多个位点可以支持TPD,揭示了PROTAC型开发的潜力。这个无E3配体降解剂(ELF降解剂)平台保留了E3泛素连接酶的天然状态,能够在活细胞中探究任何E3表面区域,并且适用于广泛的E3泛素连接酶。ELF降解剂代表了一种通用方法,可用于定义功能性降解结构域位点、指导降解剂设计以及解锁新的E3泛素连接酶(那些没有已知配体的)用于治疗应用。