Suppr超能文献

基于贝叶斯核机器回归(BKMR)和机器学习方法的尿中金属混合物与血压异常之间的关联及氧化应激的中介作用

Association between metal mixture in urine and abnormal blood pressure and mediated effect of oxidative stress based on BKMR and Machine learning method.

作者信息

Chen Junjie, Zeng Hao, Pan Zhanglei, Li Miao, Zhou Qingfeng, Chen Kaichen, Hao Yulan, Cao Xiangke, Zhang Lei, Wang Qian

机构信息

School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China.

School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan, Hebei 063210, China; Affiliated Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, Henan 475000, China.

出版信息

Ecotoxicol Environ Saf. 2025 Aug;301:118478. doi: 10.1016/j.ecoenv.2025.118478. Epub 2025 Jun 12.

Abstract

BACKGROUND

Exposure to heavy metals represents a significant risk factor for hypertension and blood pressure disorders. Notably, current evidence indicates that the key biological processes of oxidative stress, inflammation, and endothelial dysfunction are related to metal exposure and blood pressure dysregulation, ultimately contributing to cardiovascular pathogenesis. However, their underlying biological mechanisms remain incompletely characterized.

METHODS

A longitudinal study was performed among 45 healthy university students in Caofeidian, China. These participants were followed up in 4 seasons for physical examination and blood and urine samples collection between December 2017 and October 2018. we employed linear mixed effect model (LME), Bayesian kernel-machine regression (BKMR) and Machine learning (ML) to evaluate complex exposure-response relationships between multi-metal mixtures and blood pressure outcomes. Finally, we constructed the mediation analyses to analyze the potential intermediary roles of indicators in these association.

RESULTS

The analysis revealed significant associations between Cr, Mn, and Mo and elevated levels of 8-iso-prostaglandin-F2α (8-iso-PGF2α) and blood pressure (all P < 0.05), respectively. BKMR and ML further demonstrated both cumulative effects and interaction patterns within the metal mixture that collectively influenced blood pressure. Additionally, 8-iso-PGF2α is significantly positively correlated with SBP and was subsequently identified as a candidate mediator. Eventually, we found that the metals of Mn, Cr, and Mo were associated with SBP mediated by 8-iso-PGF2α with 24.6 %, 17.4 %, and 20.7 %, respectively.

CONCLUSIONS

These findings establish a mechanistic link between metal exposure and blood pressure dysregulation in young adults. Notably, the application of machine learning demonstrates novel utility in quantifying mixed metals on blood pressure and predicting the development of cardiovascular injury, providing a novel insight into environmental risk assessment methodologies.

摘要

背景

接触重金属是高血压和血压紊乱的一个重要风险因素。值得注意的是,目前的证据表明,氧化应激、炎症和内皮功能障碍的关键生物学过程与金属暴露和血压失调有关,最终导致心血管发病机制。然而,它们潜在的生物学机制仍未完全明确。

方法

在中国曹妃甸的45名健康大学生中进行了一项纵向研究。在2017年12月至2018年10月期间,对这些参与者进行了4个季节的随访,进行体格检查并采集血液和尿液样本。我们采用线性混合效应模型(LME)、贝叶斯核机器回归(BKMR)和机器学习(ML)来评估多种金属混合物与血压结果之间复杂的暴露-反应关系。最后,我们构建了中介分析来分析这些关联中指标的潜在中介作用。

结果

分析显示,铬(Cr)、锰(Mn)和钼(Mo)分别与8-异前列腺素-F2α(8-iso-PGF2α)水平升高和血压升高显著相关(所有P<0.05)。BKMR和ML进一步证明了金属混合物中的累积效应和相互作用模式,这些共同影响血压。此外,8-iso-PGF2α与收缩压(SBP)显著正相关,并随后被确定为候选中介物。最终,我们发现锰、铬和钼金属分别通过8-iso-PGF2α介导与收缩压相关,介导率分别为24.6%、17.4%和20.7%。

结论

这些发现建立了年轻人金属暴露与血压失调之间的机制联系。值得注意的是,机器学习的应用在量化混合金属对血压的影响以及预测心血管损伤的发展方面显示出了新的效用,为环境风险评估方法提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验