Pirola João Pedro, DeForest Paige, Protachevicz Paulo R, Fontenas Laura, Ferreira Ricardo F, Pena Rodrigo F O
Department of Statistics, Federal University of São Carlos, São Carlos, SP 13565-905 Brazil.
Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458 USA.
Cogn Neurodyn. 2025 Dec;19(1):89. doi: 10.1007/s11571-025-10276-4. Epub 2025 Jun 11.
This study investigates the expanding role of astrocytes, the predominant glial cells, in brain function, focusing on whether and how their presence influences neuronal network activity. We focus on particular network activities identified as synchronous and asynchronous. Using computational modeling to generate synthetic data, we examine these network states and find that astrocytes significantly affect synaptic communication, mainly in synchronous states. We use different methods of extracting data from a network and compare which is best for identifying glial cells, with mean firing rate emerging with higher accuracy. To reach the aforementioned conclusions, we applied various machine learning techniques, including Decision Trees, Random Forests, Bagging, Gradient Boosting, and Feedforward Neural Networks, the latter outperforming other models. Our findings reveal that glial cells play a crucial role in modulating synaptic activity, especially in synchronous networks, highlighting potential avenues for their detection with machine learning models through experimental accessible measures.
The online version contains supplementary material available at 10.1007/s11571-025-10276-4.
本研究调查了星形胶质细胞(主要的神经胶质细胞)在脑功能中不断扩展的作用,重点关注它们的存在是否以及如何影响神经网络活动。我们聚焦于被确定为同步和异步的特定网络活动。通过计算建模生成合成数据,我们研究这些网络状态,发现星形胶质细胞主要在同步状态下对突触通信有显著影响。我们使用从网络中提取数据的不同方法,并比较哪种方法最适合识别神经胶质细胞,平均发放率的识别准确率更高。为得出上述结论,我们应用了各种机器学习技术,包括决策树、随机森林、装袋法、梯度提升和前馈神经网络,后者的表现优于其他模型。我们的研究结果表明,神经胶质细胞在调节突触活动中起着关键作用,尤其是在同步网络中,这突出了通过实验可获取的测量方法利用机器学习模型检测它们的潜在途径。
在线版本包含可在10.1007/s11571-025-10276-4获取的补充材料。