Suppr超能文献

氨基和甲基对UiO-66负载8-羟基喹啉能力的影响:深入的实验与计算分析

Impact of amino and methyl groups on the loading capacity of UiO-66 for 8-hydroxyquinoline: an in-depth experimental and computational analysis.

作者信息

Cao Jiao-Jiao, Ge Jin-Long, Gao Yan, Liao Bo-Kai

机构信息

School of Material and Chemical Engineering, Bengbu University Bengbu 233030 China.

Engineering Technology Research Center of Silicon-based Materials Bengbu 233030 China.

出版信息

RSC Adv. 2025 Jun 17;15(26):20570-20588. doi: 10.1039/d5ra02802g. eCollection 2025 Jun 16.

Abstract

This research systematically investigates a library of UiO-66(Zr) dicarboxylate metal-organic frameworks (MOFs), functionalized with polar and nonpolar substituents (-H, -CH, -NH), to evaluate their potential as carriers for inhibitor encapsulation, using 8-hydroxyquinoline (8-HQ) as a model compound. The encapsulation process was conducted under vacuum, and 8-HQ uptake was quantified using UV-visible absorption spectroscopy, allowing for precise control over host-guest interactions. Quantitative assessment of 8-HQ loading within each functionalized UiO-66 variant revealed significant variations in uptake efficiency, ranging from 14.66% to 19.45% across the modified frameworks. Furthermore, a density functional theory-based quantitative structure-activity relationship (QSAR) approach was employed to identify key chemical and structural attributes of UiO-66 that significantly influence inhibitor uptake. Multivariate analysis identified two critical physicochemical parameters governing encapsulation efficiency: (1) the dipole moment of the functionalized linkers, which dictates framework-polarity-mediated adsorption, and (2) the hydrogen-bond-donating capacity, which modulates specific interactions with 8-HQ's phenolic oxygen. These descriptors exhibited strong linear correlations with experimental loading data, demonstrating that strategic enhancement of linker polarity and H-bonding capability can amplify inhibitor uptake by 10-20% compared to pristine UiO-66. The QSAR model deciphers MOF performance trends and predicts optimal functional groups descriptor interpolation, streamlining MOF carrier design for corrosion and drug applications through targeted linker engineering.

摘要

本研究系统地研究了一系列用极性和非极性取代基(-H、-CH、-NH)功能化的UiO-66(Zr)二羧酸金属有机框架(MOF)库,以评估它们作为抑制剂封装载体的潜力,使用8-羟基喹啉(8-HQ)作为模型化合物。封装过程在真空下进行,使用紫外可见吸收光谱法定量8-HQ的吸收量,从而能够精确控制主客体相互作用。对每个功能化的UiO-66变体中8-HQ负载量的定量评估表明,吸收效率存在显著差异,在整个改性框架中从14.66%到19.45%不等。此外,采用基于密度泛函理论的定量构效关系(QSAR)方法来确定UiO-66中显著影响抑制剂吸收的关键化学和结构属性。多变量分析确定了控制封装效率的两个关键物理化学参数:(1)功能化连接体的偶极矩,它决定了框架极性介导的吸附;(2)氢键供体能力,它调节与8-HQ酚氧的特定相互作用。这些描述符与实验负载数据表现出很强的线性相关性,表明与原始UiO-66相比,连接体极性和氢键能力的策略性增强可使抑制剂吸收量提高10-20%。QSAR模型解读了MOF的性能趋势,并通过描述符插值预测最佳官能团,通过有针对性的连接体工程简化了用于腐蚀和药物应用的MOF载体设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae49/12172650/9be396464d54/d5ra02802g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验