Noundou Vadesse L, Levy Amalie, Modla Shannon, Yu Yanbao, Qu Jing, Hanson Thomas E
Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.
Appl Environ Microbiol. 2025 Jun 18:e0101925. doi: 10.1128/aem.01019-25.
Outer membrane-derived vesicles (OMVs) have been studied in different phyla of gram-negative bacteria, most extensively in the Pseudomonadota, where they have been shown to participate in diverse biological and environmental processes. To date, the production of OMVs has not been reported in the Chlorobiaceae within the phylum Chlorobiota. is the model organism for the Chlorobiaceae that synthesizes and consumes insoluble extracellular sulfur (S(0)) globules by an unknown mechanism. Here, we report evidence implicating outer membrane vesicles in biogenic S(0) globule synthesis. We demonstrate that secretes OMVs in the extracellular milieu and that OMV concentration and size vary with growth conditions, particularly sulfide concentration. A core of 31 proteins involved in diverse biological processes such as cell wall biogenesis, inorganic ion transport, and metabolism was found to be shared between OMVs, extracellular S(0) globules, and -intact cells. Multiple analytical methods indicated that OMVs contain S(0) and that OMVs and biogenic S(0) globules share protein and polysaccharide signatures, including lipooligosaccharides. Together, these lines of evidence indicate that 's OMVs are one component of sulfur transport between cells and extracellular sulfur globules.IMPORTANCEAll living cells must exchange material with their environment while maintaining cellular integrity. This is a particular challenge for materials that are not water-soluble; however, many bacteria utilize insoluble materials for energy conservation and as nutrients for growth. Here, we show that makes outer membrane vesicles, and these vesicles are likely involved in the exchange of material with extracellular elemental sulfur globules formed and consumed by as part of its energy metabolism based on oxidizing reduced sulfur compounds like hydrogen sulfide. These data expand our basic understanding of 's metabolism. As elemental sulfur is an industrial by-product with a limited number of uses, the information here may help enable the use of additional sulfur compounds by to drive the synthesis of biomass and/or specialty biochemicals from waste elemental sulfur by this autotrophic bacterium.
外膜衍生囊泡(OMV)已在革兰氏阴性菌的不同门类中得到研究,在假单胞菌门中研究最为广泛,在该门类中已表明它们参与多种生物和环境过程。迄今为止,尚未有关于绿菌门绿菌科产生OMV的报道。 是绿菌科的模式生物,它通过未知机制合成并消耗不溶性细胞外硫(S(0))球粒。在此,我们报告了外膜囊泡参与生物源S(0)球粒合成的证据。我们证明 在细胞外环境中分泌OMV,并且OMV的浓度和大小随生长条件而变化,特别是硫化物浓度。在OMV、细胞外S(0)球粒和完整细胞之间发现了31种参与细胞壁生物合成、无机离子运输和代谢等多种生物过程的核心蛋白质。多种分析方法表明OMV含有S(0),并且OMV和生物源S(0)球粒具有共同的蛋白质和多糖特征,包括脂寡糖。这些证据共同表明 的OMV是细胞与细胞外硫球粒之间硫运输的一个组成部分。
重要性
所有活细胞在维持细胞完整性的同时必须与环境交换物质。对于不溶于水的物质来说,这是一项特殊挑战;然而,许多细菌利用不溶性物质进行能量保存并作为生长的营养物质。在此,我们表明 产生外膜囊泡,并且这些囊泡可能参与与细胞外元素硫球粒的物质交换,这些硫球粒是 在基于氧化硫化氢等还原硫化合物的能量代谢过程中形成和消耗的。这些数据扩展了我们对 代谢的基本理解。由于元素硫是一种用途有限的工业副产品,此处的信息可能有助于使 能够利用额外的硫化合物,从而驱动这种自养细菌从废弃元素硫合成生物质和/或特殊生化物质。