Suppr超能文献

资源匮乏地区一家三级护理医院的多重耐药性及其与β-内酰胺酶的共存:一项危险因素关联的横断面研究

Multidrug-resistant and its coexistence with β-lactamases at a tertiary care hospital in a low-resource setting: a cross-sectional study with an association of risk factors.

作者信息

Dahal Pragyan, Shrestha Mahendra, Maharjan Manisha, Parajuli Ranjana

机构信息

Department of Microbiology, Grande International Hospital, Dhapasi, Kathmandu 44600, Nepal.

Department of Microbiology, Grande International Hospital, Kathmandu, Nepal.

出版信息

Ther Adv Infect Dis. 2025 Jun 18;12:20499361251345920. doi: 10.1177/20499361251345920. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

is known to cause hospital-acquired infections. This bacterium produces β-lactamase enzymes that enzymatically degrade β-lactam drugs, reducing their efficacy.

OBJECTIVE

The objective of this investigation was to examine the occurrence, susceptibility, and production of various β-lactamases by multidrug-resistant (MDR-PA) and to determine the risk factors associated with extensively drug-resistant (XDR-PA) and their β-lactamases.

DESIGN

A descriptive cross-sectional study was conducted to investigate the occurrence, susceptibility, and β-lactamase production of MDR-PA and the risk factors associated with XDR-PA. The study involved collecting and analyzing 390 specimens from different 390 participants over a period from August 2021 to April 2023.

METHODS

The study utilized standard methodologies to screen and characterize . The antimicrobial-resistant patterns and presence of MDR-PA and XDR-PA were determined following standard guidelines supported by the Clinical Laboratory Standards Institute (CLSI) using various methods such as the disk diffusion method and colistin disk elution tests. Combined disk and inhibitor-based tests were used to determine extended-spectrum β-lactamases (ESBL), Metallo-β-lactamases (MBL), and AmpC-β-lactamases (AmpC) using two different methods. Clinical data were extracted from the medical records and patient requisition forms provided by clinicians. Clinical data were extracted for XDR-PA and β-lactamases applying binary logistic regression by adjusting for the confounding factors.

RESULTS

In our study, the antimicrobial-resistant pattern showed significant differences ( < 0.05) in the antibiotic-resistant pattern among β-lactamase and non-β-lactamase. The prevalence of MBL- was determined to be 13.5%, while ESBL accounted for 23.8%, and accounted for 20.5%. Coexistence of MBL + ESBL, ESBL + AmpC, MBL + , and MBL + ESBL +  was determined to be 5.3%, 2.8%, 2.3%, and 4.1%, respectively. Among the nine assessed risk factors in a multivariate regression model, prolonged hospital stays (odd ratio = 11.2, 95% CI 3.7-33.8) provided substantial risk compared to other risk factors for the colonization of XDR-PA. Similarly, in a multivariate model, previous therapy with immunosuppressant drugs (OR = 6.7, 95% CI 1.5-29.3) was found to be the leading risk factor for the colonization of β-lactamase producers .

CONCLUSION

Identification of XDR-PA and β-lactamases among MDR-PA isolates is crucial to prevent the use of unnecessary antibiotics. Early and prompt diagnosis of drug-resistant pathogens prevents treatment failure and encourages proper antibiotic therapy. Therefore, it is necessary to implement strict policies on the use of antibiotics without proper diagnosis.

摘要

背景

已知会导致医院获得性感染。这种细菌产生β-内酰胺酶,可酶解β-内酰胺类药物,降低其疗效。

目的

本研究旨在检测多重耐药鲍曼不动杆菌(MDR-PA)各种β-内酰胺酶的发生情况、敏感性和产生情况,并确定与广泛耐药鲍曼不动杆菌(XDR-PA)及其β-内酰胺酶相关的危险因素。

设计

进行了一项描述性横断面研究,以调查MDR-PAβ-内酰胺酶产生情况、敏感性及与XDR-PA相关危险因素。该研究涉及在2021年8月至2023年4月期间从390名不同参与者中收集并分析390份标本。

方法

该研究采用标准方法对鲍曼不动杆菌进行筛查和鉴定。按照临床实验室标准协会(CLSI)支持的标准指南,使用多种方法,如纸片扩散法和多粘菌素纸片洗脱试验,确定MDR-PA和XDR-PA抗菌药物耐药模式及存在情况。采用联合纸片法和基于抑制剂的试验两种不同方法,检测超广谱β-内酰胺酶(ESBL)、金属β-内酰胺酶(MBL)和AmpCβ-内酰胺酶(AmpC)。从临床医生提供的病历和患者申请单中提取临床数据。通过二元逻辑回归分析XDR-PA和β-内酰胺酶的临床数据,并对混杂因素进行校正分析。

结果

在我们的研究中,抗菌药物耐药模式显示β-内酰胺酶和非β-内酰胺酶之间的抗生素耐药模式存在显著差异(P<0.05)。MBL-鲍曼不动杆菌的流行率为13.5%,而ESBL占鲍曼不动杆菌的23.8%,AmpC占20.5%;MBL+ESBL、ESBL+AmpC、MBL+AmpC以及MBL+ESBL+AmpC共存率分别为5. .3%、2.8%、2.3%和4.1%。在多因素回归模型评估的9个危险因素中,与其他XDR-PA定植危险因素相比,住院时间延长(比值比=11.2,95%可信区间3.7-33.8)带来的风险更高。同样,在多因素模型中,既往使用免疫抑制药物治疗(OR=6.7,95%可信区间1.5-29.3)被发现是β-内酰胺酶产生菌定植的主要危险因素。

结论

在MDR-PA分离株中鉴定XDR-PA和β-内酰胺酶对于防止不必要的抗生素使用至关重要。早期及时诊断耐药病原体可防止治疗失败,并促进适当的抗生素治疗。因此,有必要对未经正确诊断而使用抗生素的情况实施严格政策。

相似文献

2
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.
Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD004197. doi: 10.1002/14651858.CD004197.pub5.
3
Interventions to improve antibiotic prescribing practices for hospital inpatients.
Cochrane Database Syst Rev. 2017 Feb 9;2(2):CD003543. doi: 10.1002/14651858.CD003543.pub4.
4
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
9
Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
Cochrane Database Syst Rev. 2022 May 18;5(5):CD014841. doi: 10.1002/14651858.CD014841.pub2.

本文引用的文献

2
Antimicrobial resistance of : navigating clinical impacts, current resistance trends, and innovations in breaking therapies.
Front Microbiol. 2024 Apr 5;15:1374466. doi: 10.3389/fmicb.2024.1374466. eCollection 2024.
6
The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update.
Drugs. 2021 Dec;81(18):2117-2131. doi: 10.1007/s40265-021-01635-6. Epub 2021 Nov 7.
7
Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin.
Curr Opin Microbiol. 2021 Dec;64:125-132. doi: 10.1016/j.mib.2021.09.010. Epub 2021 Oct 26.
8
Definitive and Indeterminate Infection in Adults with Community-acquired Pneumonia: A Prospective Observational Study.
Ann Am Thorac Soc. 2021 Sep;18(9):1475-1481. doi: 10.1513/AnnalsATS.201906-459OC.
9
Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review.
Ann Clin Microbiol Antimicrob. 2020 Sep 30;19(1):45. doi: 10.1186/s12941-020-00389-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验