Yang Cihang, Xu Jun-Li, Gowen Aoife
School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
Spectrochim Acta A Mol Biomol Spectrosc. 2025 Dec 15;343:126546. doi: 10.1016/j.saa.2025.126546. Epub 2025 Jun 7.
Understanding UV-C-induced polymer degradation is crucial for assessing and predicting the lifespan and performance of polymers in practical applications. Polyurethane (PU) and polystyrene (PS) are two widely used polymer materials that exhibit different degradation behaviours due to their molecular structure. In this study, we employed a portable Attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) and Optical Photothermal IR (O-PTIR) microscope combined with machine learning classification models to non-destructively investigate the chemical and structural changes that occur during the early stages of UV degradation. ATR-FTIR effectively captures the overall chemical changes, while O-PTIR provides higher spatial resolution, revealing local surface heterogeneity and degradation depth. In this study three classification approaches were evaluated: Partial Least Squares-Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), and Random Forest classification using the collected spectral data to classify UV degradation stages. For the results, PLS-DA showed the highest accuracy, especially for O-PTIR data (PS:81 % & PU:80 %). SVM also performed well (PS:71 % & PU:82 %) and was able to effectively capture complex spectral relationships. This approach provides a reliable method for identifying UV degradation in polymers at early stages of exposure (from 4 days).
了解紫外线C诱导的聚合物降解对于评估和预测聚合物在实际应用中的寿命和性能至关重要。聚氨酯(PU)和聚苯乙烯(PS)是两种广泛使用的聚合物材料,由于其分子结构不同,表现出不同的降解行为。在本研究中,我们采用便携式衰减全反射-傅里叶变换红外光谱(ATR-FTIR)和光热红外(O-PTIR)显微镜结合机器学习分类模型,对紫外线降解早期阶段发生的化学和结构变化进行无损研究。ATR-FTIR有效地捕捉整体化学变化,而O-PTIR提供更高的空间分辨率,揭示局部表面不均匀性和降解深度。在本研究中,评估了三种分类方法:偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)和使用收集的光谱数据对紫外线降解阶段进行分类的随机森林分类。结果显示,PLS-DA的准确率最高,特别是对于O-PTIR数据(PS:81%&PU:80%)。SVM也表现良好(PS:71%&PU:82%),能够有效地捕捉复杂的光谱关系。该方法为在暴露早期阶段(从4天起)识别聚合物中的紫外线降解提供了一种可靠的方法。