Suppr超能文献

计算模型通过动态变构变化预测丛状蛋白受体对Rap1b的Rho-GTPase结合的GAP活性功能。

Computational model predicts function of Rho-GTPase binding for plexin receptor GAP activity on Rap1b via dynamic allosteric changes.

作者信息

Bhattarai Nisha, Morrison Lindsay, Gomes Alexandre F, Savage Paul, Sahoo Amita R, Buck Matthias

机构信息

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA.

Waters Corporation, Milford, MA, USA.

出版信息

Protein Sci. 2025 Jul;34(7):e70196. doi: 10.1002/pro.70196.

Abstract

Plexin-semaphorin signaling regulates key processes such as cell migration, neuronal development, angiogenesis, and immune responses. Plexins stand out because they can directly bind with both Rho- and Ras-family small GTPases through their intracellular domains when these GTPases are in their active, GTP-bound states. This binding occurs via intracellular regions, which include a Rho-GTPase binding domain and a GTPase-activating protein (GAP) segment. Studies have shown that Rho and Ras GTPases play vital roles in plexin signaling and activation. However, the structural dynamics of plexins and GTPases and how these conformational changes affect interactions when plexin is bound with both Ras and Rho-GTPases or bound to only one specific GTPase have remained unclear. In this study, we conducted molecular dynamics simulations on six distinct plexin-GTPase bound systems to investigate the differences in conformations and dynamics between plexin-B1 and three GTPases: Rap1b, Rnd1, and Rac1. Our analysis revealed that dynamics with Rac1 are more altered compared to Rnd1, depending on whether plexin's GAP domain is bound or unbound to Rap1b. In addition, we further investigated alterations in network centralities and compared the network dynamics of the plexin-GTPase complexes, focusing on the differences when plexin is bound to both Ras (Rap1b) and Rho-GTPases (Rnd1/Rac1) versus when it is bound to only one GTPase. Our study revealed that Rnd1 exhibits stronger and more stable interactions with plexin-B1 in the absence of Rap1b, while Rac1 shows fewer and less stable connections in comparison. These computational models have features that broadly agree with experimental results from hydrogen-deuterium exchange detected by mass spectrometry. Such insights provide a better understanding of the molecular mechanisms underlying plexin-GTPase interactions and the complexities of signaling mechanisms involving GTPases in general.

摘要

丛状蛋白-信号素信号传导调节细胞迁移、神经元发育、血管生成和免疫反应等关键过程。丛状蛋白很突出,因为当这些小GTP酶处于其活跃的、结合GTP的状态时,它们可以通过其细胞内结构域直接与Rho和Ras家族的小GTP酶结合。这种结合通过细胞内区域发生,这些区域包括一个Rho-GTP酶结合结构域和一个GTP酶激活蛋白(GAP)片段。研究表明,Rho和Ras GTP酶在丛状蛋白信号传导和激活中起着至关重要的作用。然而,丛状蛋白和GTP酶的结构动力学,以及当丛状蛋白与Ras和Rho-GTP酶结合或仅与一种特定的GTP酶结合时这些构象变化如何影响相互作用,仍不清楚。在本研究中,我们对六个不同的丛状蛋白-GTP酶结合系统进行了分子动力学模拟,以研究丛状蛋白-B1与三种GTP酶:Rap1b、Rnd1和Rac1之间构象和动力学的差异。我们的分析表明,与Rnd1相比,Rac1的动力学变化更大,这取决于丛状蛋白的GAP结构域是否与Rap1b结合。此外,我们进一步研究了网络中心性的变化,并比较了丛状蛋白-GTP酶复合物的网络动力学,重点关注丛状蛋白与Ras(Rap1b)和Rho-GTP酶(Rnd1/Rac1)结合时与仅与一种GTP酶结合时的差异。我们的研究表明,在没有Rap1b的情况下,Rnd1与丛状蛋白-B1表现出更强、更稳定的相互作用,而相比之下,Rac1的连接较少且不太稳定。这些计算模型的特征与质谱检测的氢-氘交换实验结果大致一致。这些见解有助于更好地理解丛状蛋白-GTP酶相互作用的分子机制以及一般涉及GTP酶的信号传导机制的复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验