Suppr超能文献

通过溶酶体运输工程化设计反义寡核苷酸以实现靶向mRNA降解

Engineering antisense oligonucleotides for targeted mRNA degradation through lysosomal trafficking.

作者信息

Kashyap Disha, Milne Thomas A, Booth Michael J

机构信息

Department of Chemistry, University of Oxford Mansfield Road Oxford OX1 3TA UK

MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford Oxford OX3 9DS UK

出版信息

Chem Sci. 2025 Jun 9. doi: 10.1039/d5sc03751d.

Abstract

Antisense oligonucleotides (ASOs) can modulate gene expression at the mRNA level, providing the ability to tackle conventionally undruggable targets and usher in an era of personalized medicine. A key mode of action for ASOs relies upon RNase H-engagement in the nucleus, however, most mature mRNA is present in the cytoplasm. This disconnect limits the efficacy and biomedical applications of ASOs. In this paper, we have established a new mechanism of action for achieving potent and targeted mRNA knockdown by leveraging a lysosomal degradation pathway. To achieve this, we employ autophagosome-tethering compound (ATTEC) technology that utilises bifunctional small molecules for lysosomal trafficking. In this manner, to induce degradation of target mRNA located in the cytoplasm, we conjugated an ATTEC warhead, ispinesib, to RNase H-inactive ASOs. These fully 2'--methylated RNase H-inactive ASOs have higher chemical stability and tighter mRNA binding than conventional 'gapmer' sequences, but cannot be recognised by RNase H. Using our lysosomal trafficking antisense oligonucleotide (LyTON) technology, we show significant lysosome-dependent knockdown of multiple molecular targets in various cell lines, transfection and gymnotic uptake. The LyTON modification is also able to boost the knockdown efficacy of RNase H-active 'gapmer' ASOs. Engineered to degrade mRNA independent of RNase H recognition, LyTONs will enable gene silencing using oligonucleotide chemistries with higher chemical stability, tighter mRNA binding affinity, and improved cell delivery profiles. This will enable us to target a wider range of disease-relevant mRNA, potentially leading to the development of new therapies.

摘要

反义寡核苷酸(ASOs)可以在mRNA水平上调节基因表达,从而有能力攻克传统上难以成药的靶点,并开创个性化医疗的时代。然而,ASOs的一种关键作用模式依赖于在细胞核中与核糖核酸酶H(RNase H)结合,而大多数成熟mRNA存在于细胞质中。这种脱节限制了ASOs的功效和生物医学应用。在本文中,我们建立了一种新的作用机制,通过利用溶酶体降解途径实现有效且靶向的mRNA敲低。为了实现这一点,我们采用了自噬体栓系化合物(ATTEC)技术,该技术利用双功能小分子进行溶酶体运输。通过这种方式,为了诱导位于细胞质中的靶mRNA降解,我们将一种ATTEC弹头ispinesib与无RNase H活性的ASOs偶联。这些完全2'-O-甲基化的无RNase H活性的ASOs比传统的“缺口mer”序列具有更高的化学稳定性和更紧密的mRNA结合能力,但不能被RNase H识别。使用我们的溶酶体运输反义寡核苷酸(LyTON)技术,我们在各种细胞系、转染和裸核酸摄取中均显示出多个分子靶点显著的溶酶体依赖性敲低。LyTON修饰还能够提高有RNase H活性的“缺口mer”ASOs的敲低功效。LyTONs经过设计可独立于RNase H识别来降解mRNA,这将使得使用具有更高化学稳定性、更紧密的mRNA结合亲和力以及改善的细胞递送特性的寡核苷酸化学方法实现基因沉默成为可能。这将使我们能够靶向更广泛的与疾病相关的mRNA,有可能推动新疗法的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验