Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)对硫酸乙酰肝素的利用的进化动力学

Evolutionary dynamics of heparan sulfate utilization by SARS-CoV-2.

作者信息

Higuchi Shuhei, Liu Yafei, Shimizu Jun, Ono Chikako, Itoh Yumi, Nakai Wataru, Jin Hui, Kishida Kazuki, Takayama Kazuo, Okamoto Toru, Murakami Yoshiko, Kinoshita Taroh, Matsuura Yoshiharu, Shioda Tatsuo, Arase Hisashi

机构信息

Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan.

Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

出版信息

mBio. 2025 Jun 23:e0130325. doi: 10.1128/mbio.01303-25.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have acquired enhanced infectivity compared to earlier variants. To elucidate the underlying molecular mechanisms, we conducted CRISPR library screening to identify cell surface molecules that interact with the Omicron spike protein. Our findings revealed a significantly higher affinity between the Omicron spike and cell surface heparan sulfate compared to the wild-type spike. This increased binding affinity enables Omicron variants to infect cells expressing low levels of ACE2, which are minimally infected by the wild-type virus. Mutational analysis of heparan sulfate binding sites on the Omicron spike protein, coupled with electrostatic potential mapping, suggested that the accumulation of positively charged mutations has contributed to the enhanced heparan sulfate binding. Comparative analysis of heparan sulfate binding among Omicron subvariants-including BA.1, BA.2, BA.4, BA.5, XBB.1, and BA.2.86-revealed that most are likely to bind efficiently to heparan sulfate, but potential heparan sulfate binding sites of the spike protein have shifted from the early Omicron variants to more recent ones. Furthermore, we discovered that cell surface heparan sulfate proteoglycans are cleaved by TMPRSS2, a protease essential for wild-type SARS-CoV-2 infection. These findings suggest that SARS-CoV-2 is evolving to enhance its infectivity by optimizing its interaction with cell surface heparan sulfate.IMPORTANCEThe Omicron variant has evolved to become highly infectious by acquiring numerous mutations. Understanding the impact of these mutations can provide valuable insights into the drivers of viral evolution and aid in the development of improved viral surveillance and vaccines. Our study demonstrates that the Omicron variants contain mutations that enhance their ability to bind to heparan sulfate. Highly infectious human viruses often utilize heparan sulfate for infection, suggesting that heparan sulfate likely plays a crucial role in viral adaptation to human hosts. Furthermore, we found that cell surface heparan sulfate proteoglycans are sensitive to TMPRSS2, while most other cell surface proteins are resistant to TMPRSS2. Given that TMPRSS2 is known to enhance the infectivity of earlier severe acute respiratory syndrome coronavirus 2 variants but cleaves heparan sulfate proteoglycans, it is probable that the high heparan sulfate binding acquired by the Omicron variant contributes to its decreased infectivity against TMPRSS2-expressing cells compared to earlier variants.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)奥密克戎变种相比早期变种具有更强的传染性。为阐明其潜在的分子机制,我们进行了CRISPR文库筛选,以识别与奥密克戎刺突蛋白相互作用的细胞表面分子。我们的研究结果显示,与野生型刺突蛋白相比,奥密克戎刺突蛋白与细胞表面硫酸乙酰肝素之间的亲和力显著更高。这种增加的结合亲和力使奥密克戎变种能够感染低水平表达血管紧张素转换酶2(ACE2)的细胞,而野生型病毒对这些细胞的感染微乎其微。对奥密克戎刺突蛋白上硫酸乙酰肝素结合位点的突变分析,结合静电势图谱,表明带正电荷突变的积累促成了硫酸乙酰肝素结合能力的增强。对包括BA.1、BA.2、BA.4、BA.5、XBB.1和BA.2.86在内的奥密克戎亚变种之间硫酸乙酰肝素结合的比较分析表明,大多数亚变种可能都能有效地与硫酸乙酰肝素结合,但刺突蛋白潜在的硫酸乙酰肝素结合位点已从早期的奥密克戎变种转移到了较新的变种。此外,我们发现细胞表面硫酸乙酰肝素蛋白聚糖会被跨膜丝氨酸蛋白酶2(TMPRSS2)切割,TMPRSS2是野生型SARS-CoV-2感染所必需的一种蛋白酶。这些发现表明,SARS-CoV-2正在通过优化其与细胞表面硫酸乙酰肝素的相互作用来提高其传染性。

重要性

奥密克戎变种通过获得大量突变而进化为具有高度传染性。了解这些突变的影响可为病毒进化的驱动因素提供有价值的见解,并有助于改进病毒监测和疫苗的开发。我们的研究表明,奥密克戎变种含有增强其与硫酸乙酰肝素结合能力的突变。具有高度传染性的人类病毒通常利用硫酸乙酰肝素进行感染,这表明硫酸乙酰肝素可能在病毒适应人类宿主方面发挥关键作用。此外,我们发现细胞表面硫酸乙酰肝素蛋白聚糖对TMPRSS2敏感,而大多数其他细胞表面蛋白对TMPRSS2具有抗性。鉴于已知TMPRSS2可增强早期严重急性呼吸综合征冠状病毒2变种的传染性,但会切割硫酸乙酰肝素蛋白聚糖,奥密克戎变种获得的高硫酸乙酰肝素结合能力可能导致其与早期变种相比,对表达TMPRSS2的细胞的传染性降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验