Suppr超能文献

论回归模型的用途与滥用:呼吁改革统计实践与教学

On the Uses and Abuses of Regression Models: A Call for Reform of Statistical Practice and Teaching.

作者信息

Carlin John B, Moreno-Betancur Margarita

机构信息

Clinical Epidemiology & Biostatistics Unit (CEBU), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.

CEBU, Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Stat Med. 2025 Jun;44(13-14):e10244. doi: 10.1002/sim.10244.

Abstract

Regression methods dominate the practice of biostatistical analysis, but biostatistical training emphasizes the details of regression models and methods ahead of the purposes for which such modeling might be useful. More broadly, statistics is widely understood to provide a body of techniques for "modeling data," underpinned by what we describe as the "true model myth": that the task of the statistician/data analyst is to build a model that closely approximates the true data generating process. By way of our own historical examples and a brief review of mainstream clinical research journals, we describe how this perspective has led to a range of problems in the application of regression methods, including misguided "adjustment" for covariates, misinterpretation of regression coefficients and the widespread fitting of regression models without a clear purpose. We then outline a new approach to the teaching and application of biostatistical methods, which situates them within a framework that first requires clear definition of the substantive research question at hand, within one of three categories: descriptive, predictive, or causal. Within this approach, the development and application of (multivariable) regression models, as well as other advanced biostatistical methods, should proceed differently according to the type of question. Regression methods will no doubt remain central to statistical practice as they provide a powerful tool for representing variation in a response or outcome variable as a function of "input" variables, but their conceptualization and usage should follow from the purpose at hand.

摘要

回归方法在生物统计学分析实践中占据主导地位,但生物统计学培训在强调回归模型和方法的细节时,却将此类建模可能有用的目的置于次要位置。更广泛地说,统计学被普遍理解为提供了一套“数据建模”技术,其背后支撑着我们所说的“真实模型神话”:即统计学家/数据分析师的任务是构建一个与真实数据生成过程紧密近似的模型。通过我们自己的历史实例以及对主流临床研究期刊的简要回顾,我们描述了这种观点如何在回归方法的应用中导致了一系列问题,包括对协变量进行误导性的“调整”、对回归系数的错误解读以及在没有明确目的的情况下广泛拟合回归模型。然后,我们概述了一种生物统计学方法教学与应用的新方法,该方法将它们置于一个框架内,此框架首先要求在描述性、预测性或因果性这三类中的某一类中,清晰界定手头的实质性研究问题。在这种方法中,(多变量)回归模型以及其他先进生物统计学方法的开发与应用,应根据问题的类型而有所不同。回归方法无疑仍将是统计实践的核心,因为它们为将响应或结果变量中的变异表示为“输入”变量的函数提供了一个强大工具,但其概念化和使用应从手头的目的出发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be05/12186762/0dcc948d4b3f/SIM-44-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验