Mandal Anirban, Jain Buddhi Prakash, Ghosh Debasish Kumar
Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, West Bengal, India.
Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
Methods Mol Biol. 2025;2952:193-218. doi: 10.1007/978-1-0716-4690-8_11.
Virtual screening of large libraries of small molecules against proteins is a computational approach used in drug discovery and molecular biology to identify potential drug candidates or ligands that can bind to a specific target protein. The goal of this process is to predict the ab initio binding affinities and prioritize molecules that have the potential to interact with the target protein and modulate its activity. This is a crucial step in drug development because it can significantly reduce the time and cost associated with experimental compound screening. In this chapter, we provide an overview of structure-based virtual screening, which involves various steps, including curating small molecule libraries and protein structures from chemical and protein databases, preparing and refining structures, conducting high-throughput and automated binding simulations of ligands on receptor proteins using state-of-the-art docking software, scoring and ranking the binding affinities, and analyzing the results. As an example, we use RNA-dependent RNA polymerase (NS5B) enzyme of the hepatitis C virus (HCV) and demonstrate screening of a spectrum of small molecules available at the PubChem database to identify its potential modulators. In general, this process relies on systematic and data-driven methods that leverage swift identification of potential small molecule modulators for specific viral proteins, expediting drug discovery in pharmaceutical research.
针对蛋白质对小分子大文库进行虚拟筛选是药物发现和分子生物学中使用的一种计算方法,用于识别可能与特定靶蛋白结合的潜在药物候选物或配体。这一过程的目标是预测从头算结合亲和力,并对有可能与靶蛋白相互作用并调节其活性的分子进行优先级排序。这是药物开发中的关键一步,因为它可以显著减少与实验性化合物筛选相关的时间和成本。在本章中,我们概述了基于结构的虚拟筛选,它涉及多个步骤,包括从化学和蛋白质数据库中挑选小分子文库和蛋白质结构、制备和优化结构、使用最先进的对接软件对受体蛋白上的配体进行高通量和自动化结合模拟、对结合亲和力进行评分和排名以及分析结果。作为一个例子,我们使用丙型肝炎病毒(HCV)的RNA依赖性RNA聚合酶(NS5B)酶,并展示了对PubChem数据库中一系列小分子的筛选,以识别其潜在调节剂。一般来说,这个过程依赖于系统的和数据驱动的方法,利用快速识别特定病毒蛋白的潜在小分子调节剂,加速药物研究中的药物发现。