Suppr超能文献

人工智能对炎症性肠病相关肿瘤内镜评估的影响。

The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

作者信息

Urquhart Siri A, Christof Michael, Coelho-Prabhu Nayantara

机构信息

Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.

University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.

出版信息

Therap Adv Gastroenterol. 2025 Jun 23;18:17562848251348574. doi: 10.1177/17562848251348574. eCollection 2025.

Abstract

Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract resulting from an inappropriate immune response to an altered gut microbiome in genetically predisposed individuals. Endoscopy plays a central role in IBD management, aiding in diagnosis, disease staging, monitoring, and therapeutic guidance. Patients with IBD face an increased risk of colorectal neoplasia due to chronic inflammation. Artificial intelligence (AI)-based systems show promise in detecting and classifying dysplasia and neoplasia during endoscopic evaluation. While there have been several studies on the application of AI to detect and diagnose various types of neoplasia in the non-IBD population, the literature in patients with IBD is limited. We aim to summarize the current evidence on the application of AI technologies to detect IBD-associated neoplasia, highlighting potential benefits, limitations, and future directions. A comprehensive literature search was performed using the PubMed database to identify relevant studies from January 2010 to February 2025. Additional references were identified from the relevant articles' bibliographies. AI-assisted endoscopy, particularly using machine learning and deep learning techniques, has shown promise in improving lesion detection rates and supporting real-time decision-making. Computer-aided detection systems may increase the sensitivity of dysplasia identification, while computer-aided diagnosis tools can aid in lesion characterization. Early studies suggest that AI can reduce interobserver variability, improve targeting of biopsies, and potentially lead to more personalized surveillance strategies. Although clinical data specific to IBD-related neoplasia remain limited compared to sporadic colorectal neoplasia, the integration of AI into endoscopic practice holds significant potential to enhance dysplasia detection and improve patient outcomes. Continued research, validation in IBD-specific cohorts, and integration with clinical workflows are essential to realize the full impact of AI in this setting.

摘要

炎症性肠病(IBD)是一组胃肠道慢性炎症性疾病,由遗传易感性个体对改变的肠道微生物群产生不适当的免疫反应引起。内镜检查在IBD管理中起着核心作用,有助于诊断、疾病分期、监测和治疗指导。由于慢性炎症,IBD患者患结直肠癌的风险增加。基于人工智能(AI)的系统在结肠镜检查评估期间检测和分类发育异常和肿瘤形成方面显示出前景。虽然已经有几项关于应用AI检测和诊断非IBD人群中各种类型肿瘤形成的研究,但IBD患者的相关文献有限。我们旨在总结当前关于应用AI技术检测IBD相关肿瘤形成的证据,突出潜在益处、局限性和未来方向。使用PubMed数据库进行了全面的文献检索,以识别2010年1月至2025年2月的相关研究。从相关文章的参考文献中识别出其他参考文献。AI辅助内镜检查,特别是使用机器学习和深度学习技术,在提高病变检测率和支持实时决策方面显示出前景。计算机辅助检测系统可能会提高发育异常识别的敏感性,而计算机辅助诊断工具可以帮助进行病变特征描述。早期研究表明,AI可以减少观察者间的变异性,改善活检靶向,并可能导致更个性化的监测策略。尽管与散发性结直肠癌相比,IBD相关肿瘤形成的特定临床数据仍然有限,但将AI整合到内镜实践中具有显著潜力,可提高发育异常检测率并改善患者预后。持续的研究、在IBD特定队列中的验证以及与临床工作流程的整合对于实现AI在这种情况下的全面影响至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e18/12185948/4131332ad9c5/10.1177_17562848251348574-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验