Suppr超能文献

自闭症简单贝叶斯模型实证证据的系统评价与荟萃分析。

A Systematic Review and Meta-analysis of Empirical Evidence for the Simple Bayesian Model of Autism.

作者信息

Cui Ke, Lin Xiaoxiao, Gao Ruirui, Jing Shiqi, Luo Fei, Wang Jinyan

机构信息

State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Neuropsychol Rev. 2025 Jun 27. doi: 10.1007/s11065-025-09672-8.

Abstract

The Bayesian framework conceptualizes human perception as a process of probabilistic inference, where the brain integrates prior expectations with incoming sensory evidence to construct a mental model of the world. Within this framework, several distinct theories-collectively termed the "simple Bayesian model"-suggest that perceptual atypicalities in autism stem from an imbalance between the precision of prior beliefs and sensory input. This study presents a systematic review and the first meta-analysis to evaluate empirical evidence for the simple Bayesian model. We synthesized 24 effect sizes from 23 eligible studies using a random-effects model to test its core predictions: that autistic individuals exhibit universally "broader" priors and/or heightened sensory precision compared to non-autistic controls. We found a significant, small-to-moderate overall effect in the predicted direction (Hedge's g = 0.37). However, heterogeneity across studies was large and significant and was not explained by any of the examined moderators: prior type (structural vs. contextual), stimulus type (social vs. nonsocial), task setting (implicit vs. explicit), cognitive domain (higher-level cognition vs. perception), or participant characteristics. Given the significant unexplained heterogeneity, our findings offer only limited support for a universal "simple Bayesian model" of autism. We conclude that future research should move beyond the simple Bayesian model to investigate more sophisticated, hierarchical Bayesian accounts of autism.

摘要

贝叶斯框架将人类感知概念化为一个概率推理过程,在这个过程中,大脑将先验期望与传入的感官证据整合起来,以构建一个关于世界的心理模型。在这个框架内,有几种不同的理论——统称为“简单贝叶斯模型”——表明自闭症中的感知异常源于先验信念的精度与感官输入之间的不平衡。本研究进行了一项系统综述和首次荟萃分析,以评估支持简单贝叶斯模型的实证证据。我们使用随机效应模型综合了23项合格研究中的24个效应量,以检验其核心预测:与非自闭症对照组相比,自闭症个体普遍表现出“更宽泛”的先验和/或更高的感官精度。我们在预测方向上发现了一个显著的、小到中等程度的总体效应(赫奇斯g值 = 0.37)。然而,各研究之间的异质性很大且显著,并且没有被任何所考察的调节因素所解释:先验类型(结构型与情境型)、刺激类型(社会型与非社会型)、任务设置(内隐型与外显型)、认知领域(高级认知与感知)或参与者特征。鉴于存在显著的无法解释的异质性,我们的研究结果仅为自闭症的通用“简单贝叶斯模型”提供了有限的支持。我们得出结论,未来的研究应该超越简单贝叶斯模型,去探究更复杂的、分层的自闭症贝叶斯理论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验