Suppr超能文献

维甲酸受体组装动力学在耳蜗器官发生中发挥双重作用。

Retinoic acid receptor assembly dynamics governs dual functions in cochlear organogenesis.

作者信息

Chakraborty Saikat, Wang Shuze, Ruhala Jack, Mehling Brett, Liu Jie, Waldhaus Joerg

机构信息

Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109.

Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2426739122. doi: 10.1073/pnas.2426739122. Epub 2025 Jun 27.

Abstract

Retinoic acid (RA) is a morphogen that contributes to inner ear development. Gain and loss of function experiments have indicated retinoic acid's critical role in cochlear hair cell development. However, the underlying molecular mechanisms are unclear. Here, we hypothesized that RA receptor alpha (RARA) has a dual role in cochlear organogenesis: First, during embryonic development, in the presence of RA, RARA functions as a transcriptional activator that induces prosensory gene expression in progenitor cells and supports differentiation of the organ of Corti; later during postnatal development, when RA is absent, the function of RARA switches, thereby repressing prosensory genes in postnatal hair cells and hindering trans-differentiation into supporting cells. This hypothesis was supported by demonstration that RARA forms a complex with either the coactivator NCOA1 or the corepressor NCOR1 depending on the developmental stage. In addition, modulation of RA levels was found to govern recruitment of the coactivator and corepressor to the RARA complex, and the expression of prosensory genes was validated to depend on RARA complex composition. Together, our results provide insights supporting the potential of harnessing RA signaling to induce prosensory progenitors in stem cell-based strategies for hearing loss.

摘要

视黄酸(RA)是一种对内耳发育有作用的形态发生素。功能获得和功能丧失实验表明视黄酸在耳蜗毛细胞发育中起关键作用。然而,其潜在的分子机制尚不清楚。在此,我们假设视黄酸受体α(RARA)在耳蜗器官发生中具有双重作用:首先,在胚胎发育期间,在视黄酸存在的情况下,RARA作为转录激活因子发挥作用,诱导祖细胞中前感觉基因的表达,并支持柯蒂氏器的分化;在出生后发育后期,当视黄酸不存在时,RARA的功能发生转变,从而抑制出生后毛细胞中的前感觉基因,并阻碍其向支持细胞的转分化。这一假设得到了如下证据的支持:根据发育阶段的不同,RARA与共激活因子NCOA1或共抑制因子NCOR1形成复合物。此外,研究发现视黄酸水平的调节控制着共激活因子和共抑制因子向RARA复合物的募集,并且证实前感觉基因的表达取决于RARA复合物的组成。总之,我们的研究结果为利用视黄酸信号在基于干细胞的听力损失治疗策略中诱导前感觉祖细胞的潜力提供了见解。

相似文献

1
Retinoic acid receptor assembly dynamics governs dual functions in cochlear organogenesis.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2426739122. doi: 10.1073/pnas.2426739122. Epub 2025 Jun 27.
3
Retinoic Acid Receptor β: A Potential Therapeutic Target in Retinoic Acid Treatment of Endometrial Cancer.
Int J Gynecol Cancer. 2017 May;27(4):643-650. doi: 10.1097/IGC.0000000000000995.
4
5
Stage-specific DNA methylation dynamics in mammalian heart development.
Epigenomics. 2025 Apr;17(5):359-371. doi: 10.1080/17501911.2025.2467024. Epub 2025 Feb 21.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

本文引用的文献

1
3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification.
Dev Cell. 2024 Jun 17;59(12):1538-1552.e6. doi: 10.1016/j.devcel.2024.03.028. Epub 2024 Apr 8.
2
Mapping the developmental potential of mouse inner ear organoids at single-cell resolution.
iScience. 2024 Feb 1;27(3):109069. doi: 10.1016/j.isci.2024.109069. eCollection 2024 Mar 15.
3
Generating high-fidelity cochlear organoids from human pluripotent stem cells.
Cell Stem Cell. 2023 Jul 6;30(7):950-961.e7. doi: 10.1016/j.stem.2023.06.006.
4
Three distinct enhancers cooperate for sound receptor hair cell development.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2119850119. doi: 10.1073/pnas.2119850119. Epub 2022 Aug 4.
5
Fluorescent mRNA detection in the adult mouse cochlea.
STAR Protoc. 2021 Aug 7;2(3):100711. doi: 10.1016/j.xpro.2021.100711. eCollection 2021 Sep 17.
6
Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration.
Dev Cell. 2021 Sep 13;56(17):2471-2485.e5. doi: 10.1016/j.devcel.2021.07.003. Epub 2021 Jul 30.
7
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
8
Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data.
Genome Res. 2021 Oct;31(10):1885-1899. doi: 10.1101/gr.271080.120. Epub 2021 Apr 9.
9
Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea.
Cell Rep. 2021 Jan 19;34(3):108646. doi: 10.1016/j.celrep.2020.108646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验