Suppr超能文献

使用被动数字生物标志物、心理评估和自动面部情绪识别开发物质使用障碍康复的连贯预测模型:一项前瞻性队列研究方案

Development of a Cohesive Predictive Model for Substance Use Disorder Rehabilitation Using Passive Digital Biomarkers, Psychological Assessments, and Automated Facial Emotion Recognition: Protocol for a Prospective Cohort Study.

作者信息

Garzón-Partida Andrea P, Magaña-Plascencia Kimberly, Martínez-Fernández Diana Emilia, García-Estrada Joaquín, Luquin Sonia, Fernández-Quezada David

机构信息

Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.

Instituto de Neurociencias Traslacionales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico.

出版信息

JMIR Res Protoc. 2025 Jun 27;14:e71374. doi: 10.2196/71374.

Abstract

BACKGROUND

Substance use disorder (SUD) involves excessive substance consumption and persistent reward-seeking behaviors, leading to serious physical, cognitive, and social consequences. This disorder is a global health crisis tied to increased mortality, unemployment, and reduced quality of life. Altered brain connectivity, circadian rhythms, and dopaminergic pathways contribute to sleep disorders, anxiety, and stress, which worsen SUD severity and relapse. Factors like trauma and socioeconomic disadvantages heighten risk. Digital health technologies, including wearables and machine learning, show promise for diagnosis, monitoring, and intervention, from relapse prediction to early detection of comorbidities. With high relapse rates and younger patient cases, these innovations could enhance the treatment outcomes of SUD.

OBJECTIVE

The objective of this study is to develop and validate a predictive model with machine learning for the duration of therapy and the rehabilitation or relapse in patients with SUD, using digital physiological measurements, psychological profiles, automatic facial emotion recognition, and the emotional state during craving.

METHODS

The study will be conducted with adult male patients with SUD at a rehabilitation center and control volunteers. Participants will undergo a self-reported demographic and psychological assessment, a clinician-administered craving and emotional reaction test, and will also be monitored using a smartwatch. SUD participants will be monitored for a total of 18 months (6 months during rehabilitation, an additional 12 months post discharge), and control participants for a total of 6 months. All participants will be reassessed at the sixth month of monitoring. The collected data will then be used to train models with a neural network, which will then be validated against other models and compared with other algorithms. Demographic, psychological, digital biomarkers, and craving profiles will be created, correlations will be analyzed, and they will be compared with controls to generate a digital phenotype of SUD. When the model achieves adequate validity (area under the curve of ≥0.80), a graphic user interface will then be designed for clinical use.

RESULTS

The study is supported by the Program for the Improvement of Working Conditions for Members of the SNII and SNCA (PROSNII U006EST), and APPAC-VII-CUCS-2025 for Article Publication Fees, from the University of Guadalajara. The research protocol was approved by the University of Guadalajara (reference CI-01225) in January 2025. Recruitment of patients with SUD and control participants will take place from January 2025 through January 2027.

CONCLUSIONS

As shown in recent studies, accessible and affordable wearables, like commercial smartwatches, combined with psychological, demographic, and emotional state data, used with a machine learning predictive model, may be able to be used as tools to enhance SUD rehabilitation and prevent relapse.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/71374.

摘要

背景

物质使用障碍(SUD)涉及物质的过度消费和持续的寻求奖励行为,会导致严重的身体、认知和社会后果。这种障碍是一场全球健康危机,与死亡率上升、失业以及生活质量下降相关。大脑连接性、昼夜节律和多巴胺能通路的改变会导致睡眠障碍、焦虑和压力,进而使SUD的严重程度和复发情况恶化。创伤和社会经济劣势等因素会增加患病风险。包括可穿戴设备和机器学习在内的数字健康技术在诊断、监测和干预方面展现出前景,从复发预测到共病的早期检测。鉴于高复发率和患者年轻化的情况,这些创新可以改善SUD的治疗效果。

目的

本研究的目的是利用数字生理测量、心理概况、自动面部情绪识别以及渴望期间的情绪状态,开发并验证一种基于机器学习的预测模型,用于预测SUD患者的治疗持续时间以及康复或复发情况。

方法

该研究将在一家康复中心对成年男性SUD患者和对照志愿者开展。参与者将接受自我报告的人口统计学和心理评估、临床医生实施的渴望和情绪反应测试,并且还将使用智能手表进行监测。SUD参与者将总共接受18个月的监测(康复期间6个月,出院后额外12个月),对照参与者总共接受6个月的监测。所有参与者将在监测的第六个月重新评估。然后,收集到的数据将用于训练神经网络模型,之后该模型将与其他模型进行验证,并与其他算法进行比较。将创建人口统计学、心理、数字生物标志物和渴望概况,分析相关性,并与对照组进行比较,以生成SUD的数字表型。当模型达到足够的有效性(曲线下面积≥0.80)时,将设计一个图形用户界面以供临床使用。

结果

该研究得到了瓜达拉哈拉大学SNII和SNCA成员工作条件改善计划(PROSNII U006EST)以及用于文章发表费用的APPAC-VII-CUCS-2025的支持。研究方案于2025年1月获得瓜达拉哈拉大学批准(参考编号CI-01225)。SUD患者和对照参与者的招募将于2025年1月至2027年1月进行。

结论

如近期研究所示,价格亲民且易于获取的可穿戴设备,如商用智能手表,结合心理、人口统计学和情绪状态数据,与机器学习预测模型一起使用,可能能够用作增强SUD康复和预防复发的工具。

国际注册报告标识符(IRRID):PRR1-10.2196/71374。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f6e/12254711/ff4c8ee94850/resprot_v14i1e71374_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验