Gölz T, Baù E, Zhang J, Kaltenecker K, Trauner D, Maier S A, Keilmann F, Lohmüller T, Tittl A
Department of Physics, Chair in Hybrid Nanosystems, Nano-Institute Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
Department of Physics, Chair for Photonics and Optoelectronics, Nano-Institute Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
Nat Commun. 2025 Jul 1;16(1):6033. doi: 10.1038/s41467-025-61341-9.
Understanding the biophysical and biochemical properties of molecular nanocarriers under physiological conditions with minimal interference is critical for advancing photopharmacology, drug delivery, nanotheranostics and synthetic biology. However, analytical methods often struggle to combine precise chemical imaging and dynamic measurements without perturbative labeling. This challenge is exemplified by azobenzene-based photoswitchable lipids, which are intriguing reagents for controlling nanocarrier properties on fast timescales, enabling precise light-induced drug release. Here, we leverage the chemical recognition and high spatio-temporal resolution of scattering-type scanning near-field optical microscopy (s-SNOM) to demonstrate a non-destructive, label-free technique for mid-infrared imaging and spectroscopy of individual photoswitchable liposomes. Our transient nanoscopy approach enables imaging below the diffraction limit and tracks dynamics with sampling times as fast as 30 ms. We resolve photoinduced changes in shape and MIR spectral signature of individual vesicles and discover abrupt and delayed photoisomerization dynamics. Our findings highlight the method's potential for studying complex dynamics of unlabeled nanoscale soft matter.
在最小干扰的生理条件下了解分子纳米载体的生物物理和生化特性对于推进光药理学、药物递送、纳米诊疗学和合成生物学至关重要。然而,分析方法往往难以在不进行扰动标记的情况下将精确的化学成像和动态测量结合起来。基于偶氮苯的光开关脂质就是这一挑战的例证,它们是在快速时间尺度上控制纳米载体特性、实现精确光诱导药物释放的有趣试剂。在这里,我们利用散射型扫描近场光学显微镜(s-SNOM)的化学识别和高时空分辨率,展示了一种用于单个光开关脂质体中红外成像和光谱分析的无损、无标记技术。我们的瞬态纳米显微镜方法能够在衍射极限以下成像,并以低至30毫秒的采样时间跟踪动力学。我们解析了单个囊泡的光诱导形状变化和中红外光谱特征,并发现了突然和延迟的光异构化动力学。我们的研究结果突出了该方法在研究未标记纳米级软物质复杂动力学方面的潜力。