Suppr超能文献

解析锂离子电池及其他电池中的库仑损失

Deciphering coulombic loss in lithium-ion batteries and beyond.

作者信息

Cai Jiyu, Trask Steve E, Yang Zhenzhen, Xie Yingying, Lu Wenquan, Nguyen Hoai, Liu Yuzi, Meng Xiangbo, Veith Gabriel M, Jia Hao, Xu Wu, Chen Zonghai

机构信息

Chemcial Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5785. doi: 10.1038/s41467-025-60833-y.

Abstract

Lithium-ion batteries are pivotal for modern energy storage, yet accurately predicting their lifespan remains a critical challenge. While descriptors like coulombic efficiency are widely used to assess battery longevity, the unclear physical origins of coulombic losses cause semi-quantitative correlation with capacity, complicating battery development. Here, we combine high-precision leakage current and open-circuit-voltage measurements with charge conservation principles to explore microscopic charge consumptions at electrode-electrolyte interfaces across diverse chemistries. We demonstrate that coulombic loss arises from a synergy between local charge neutrality and global charge compensation, reconciling its quantitative correlation to capacity. Contrary to conventional assumptions equating coulombic loss with irreversible capacity loss, this framework resolves systematic overestimations and paradoxical phenomena in existing chemistries. Our findings establish physics-informed criteria for accelerated lifespan evaluation and guide rational design of long-life lithium-ion batteries and beyond.

摘要

锂离子电池对于现代能量存储至关重要,但准确预测其使用寿命仍然是一项严峻挑战。虽然诸如库仑效率等描述符被广泛用于评估电池寿命,但库仑损失的物理起源尚不明确,导致其与容量之间存在半定量相关性,给电池开发带来了复杂性。在此,我们将高精度漏电流和开路电压测量与电荷守恒原理相结合,以探索不同化学体系中电极-电解质界面处的微观电荷消耗情况。我们证明,库仑损失源于局部电荷中性和全局电荷补偿之间的协同作用,从而调和了其与容量的定量相关性。与将库仑损失等同于不可逆容量损失的传统假设相反,该框架解决了现有化学体系中的系统性高估和矛盾现象。我们的研究结果为加速寿命评估建立了基于物理的标准,并指导长寿命锂离子电池及其他电池的合理设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59f0/12216820/5c4aa6b13db8/41467_2025_60833_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验