Suppr超能文献

一种使用步态分析预测和分级髋骨关节炎的可解释机器学习方法。

An interpretable machine learning approach for predicting and grading hip osteoarthritis using gait analysis.

作者信息

Yang Qing, Ji Xinyu, Zhang Yuyan, Du Shaoyi, Ji Bing, Zeng Wei

机构信息

Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing Wu Wei Qi Road, Jinan, 250021, Shandong Province, People's Republic of China.

School of Control Science and Engineering, Shandong University, Jingshi Road, Jinan, 250061, Shandong Province, People's Republic of China.

出版信息

BMC Musculoskelet Disord. 2025 Jul 1;26(1):580. doi: 10.1186/s12891-025-08911-6.

Abstract

BACKGROUND

Osteoarthritis (OA) of the hip is a progressive musculoskeletal disorder characterized by stiffness and limited passive range of motion. Hip OA patients experience mobility impairment and altered gait patterns when compared to healthy controls (HCs). Although various interventions have been designed to alleviate these symptoms, it is unclear if there is a reliable method to track biomechanical changes in patients with unilateral hip OA in a clinical setting.

PURPOSE

The purpose of this study is to evaluate the efficacy of lower extremity kinematic gait data for detecting and rating the severity of unilateral hip OA using machine learning algorithms.

METHODS

First, a feature extraction framework is developed to derive several discriminative spatiotemporal and nonlinear features from lower extremity kinematic gait data. These features reflect the subtle disparity in gait characteristics, and can serve as indicators to distinguish between groups. Afterwards, the Shapley Additive exPlanations (SHAP) method is applied for feature selection and dimensionality reduction, providing detailed explanations of each feature's contribution to classification performance. Second, a support vector machine (SVM) is used to classify gait patterns between unilateral hip OA patients and HCs. Finally, the effectiveness of this strategy is comprehensively validated on a publicly available gait dataset, containing 80 asymptomatic participants and 99 patients with unilateral hip OA, who are classified according to Grades 2, 3, and 4 of Kellgren and Lawrence (KL).

RESULTS

Using a cross-validation scheme of 10-fold, the classification accuracy achieves 98.21% for hip OA detection (HCs vs hip OA patients) and 89.65% (HCs vs Grade2/3 vs Grade 4) and 87.54% (HCs vs Grade2 vs Grade 3 vs Grade 4) for severity rating.

CONCLUSION

The results demonstrate superior performance compared to other up-to-date methods, suggesting that the proposed method can serve as a supplementary tool to the KL grading scale for hip OA detection and severity assessment in clinical practice. Gait analysis provides objective data on the patient's walking pattern and can detect subtle changes in gait that may not be apparent on a radiographic image.

TRIAL REGISTRATION

ClinicalTrials. gov (NCT01907503). The registration date of the clinical trial is 17th July, 2013.

摘要

背景

髋关节骨关节炎(OA)是一种进行性肌肉骨骼疾病,其特征为僵硬和被动活动范围受限。与健康对照者(HCs)相比,髋关节OA患者存在行动能力受损和步态模式改变的情况。尽管已设计了各种干预措施来缓解这些症状,但尚不清楚在临床环境中是否存在一种可靠的方法来追踪单侧髋关节OA患者的生物力学变化。

目的

本研究的目的是使用机器学习算法评估下肢运动学步态数据在检测和评定单侧髋关节OA严重程度方面的有效性。

方法

首先,开发一个特征提取框架,从下肢运动学步态数据中提取若干有判别力的时空和非线性特征。这些特征反映了步态特征的细微差异,可作为区分不同组别的指标。之后,应用Shapley值相加解释(SHAP)方法进行特征选择和降维,详细解释每个特征对分类性能的贡献。其次,使用支持向量机(SVM)对单侧髋关节OA患者和HCs之间的步态模式进行分类。最后,在一个公开可用的步态数据集上全面验证该策略的有效性,该数据集包含80名无症状参与者和99名单侧髋关节OA患者,这些患者根据Kellgren和Lawrence(KL)分级的2级、3级和4级进行分类。

结果

采用10折交叉验证方案,髋关节OA检测(HCs与髋关节OA患者)的分类准确率达到98.21%,严重程度评定的准确率分别为89.65%(HCs与2/3级与4级)和87.54%(HCs与2级与3级与4级)。

结论

结果表明该方法与其他最新方法相比具有卓越性能,这表明所提出的方法可作为KL分级量表的补充工具,用于临床实践中髋关节OA的检测和严重程度评估。步态分析提供了关于患者行走模式的客观数据,并且能够检测到在X线图像上可能不明显的步态细微变化。

试验注册

ClinicalTrials.gov(NCT01907503)。该临床试验的注册日期为2013年7月17日。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验