Suppr超能文献

EnsemPred-ACP:结合机器学习与深度学习以改进抗癌肽预测

EnsemPred-ACP: Combining machine and deep learning to improve anticancer peptide prediction.

作者信息

Kwon Minjun, Jang Yong Eun, Hwang Ji Su, Kim Seok Gi, George Nimisha Pradeep, Basith Shaherin, Lee Gwang

机构信息

Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.

Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.

出版信息

Comput Biol Med. 2025 Sep;196(Pt A):110668. doi: 10.1016/j.compbiomed.2025.110668. Epub 2025 Jul 3.

Abstract

Anticancer peptide (ACP) has emerged as potent therapeutic agents owing to its ability to selectively target cancer cells while minimising toxicity to healthy cells. However, the accurate computational prediction of ACP remains challenging because of the complex molecular mechanisms underlying cancer. In this study, we introduce EnsemPred-ACP, an innovative ensemble framework that combines machine learning (ML) and deep learning (DL) approaches to enhance ACP prediction. Our primary innovation is the introduction of binary profile features (BPF) to augment pre-trained protein embeddings, thereby capturing position-specific patterns crucial for ACP identification. The framework used a dual-pipeline architecture; ML models processed handcrafted sequence features and embeddings, whereas DL models handled BPF-enhanced embeddings. Upon evaluation with independent datasets, EnsemPred-ACP achieved an accuracy of 0.863, sensitivity of 0.897, and specificity of 0.830, notably outperforming existing methods. The model demonstrated a strong generalisation performance, achieving an area under the receiver operating characteristic curve of 0.93. Ablation studies on independent datasets further highlighted the substantial impact of BPF, enhancing the prediction accuracy by 2.5 % and 11.1 % when integrated with ESM2 and ProtT5 embeddings, respectively. These results demonstrate the effectiveness of our integrated approach in accurately identifying potential therapeutic peptides, thereby contributing to the advancement of peptide-based cancer therapeutics.

摘要

抗癌肽(ACP)因其能够选择性地靶向癌细胞,同时将对健康细胞的毒性降至最低,已成为一种有效的治疗剂。然而,由于癌症背后复杂的分子机制,ACP的准确计算预测仍然具有挑战性。在本研究中,我们引入了EnsemPred-ACP,这是一种创新的集成框架,它结合了机器学习(ML)和深度学习(DL)方法来增强ACP预测。我们的主要创新是引入二元轮廓特征(BPF)来增强预训练的蛋白质嵌入,从而捕捉对ACP识别至关重要的位置特异性模式。该框架采用双管道架构;ML模型处理手工制作的序列特征和嵌入,而DL模型处理BPF增强的嵌入。在使用独立数据集进行评估时,EnsemPred-ACP的准确率达到0.863,灵敏度达到0.897,特异性达到0.830,明显优于现有方法。该模型表现出很强的泛化性能,受试者工作特征曲线下面积达到0.93。对独立数据集的消融研究进一步突出了BPF的重大影响,当与ESM2和ProtT5嵌入分别整合时,预测准确率分别提高了2.5%和11.1%。这些结果证明了我们的综合方法在准确识别潜在治疗性肽方面的有效性,从而有助于基于肽的癌症治疗的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验