Suppr超能文献

通过自适应聚类和非局部均值算法对CT和MRI图像进行细节保留去噪

Detail-preserving denoising of CT and MRI images via adaptive clustering and non-local means algorithm.

作者信息

Sharma Mohit, Dogra Ayush, Goyal Bhawna, Gupta Anita, Saikia Manob Jyoti

机构信息

Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.

出版信息

Sci Rep. 2025 Jul 4;15(1):23859. doi: 10.1038/s41598-025-08034-x.

Abstract

Medical imaging systems such as computed tomography (CT) and magnetic resonance imaging (MRI) are vital tools in clinical diagnosis and treatment planning. However, these modalities are inherently susceptible to Gaussian noise introduced during image acquisition, leading to degraded image quality and impaired visualization of critical anatomical structures. Effective denoising is therefore essential to enhance diagnostic accuracy while preserving fine details such as tissue textures and structural boundaries. This study proposes a robust and efficient denoising framework specifically designed for CT and MRI images corrupted by Gaussian noise. The method integrates a cluster-wise principal component analysis (PCA) thresholding approach guided by the Marchenko-Pastur (MP) law from random matrix theory and a non-local means algorithm. Noise level estimation is achieved globally by analysing the statistical distribution of eigenvalues from noisy image patch matrices and leveraging the MP law to accurately determine the Gaussian noise variance. An adaptive clustering technique is employed to group similar patches based on underlying features such as textures and edges and enables localized denoising operations tailored to heterogeneous image regions. Within each cluster denoising is performed in two stages where initially hard thresholding based on the MP law is applied to the singular values in the SVD domain to obtain a low-rank approximation that preserves essential image content while removing noise-dominated components. Residual noise in the low-rank matrix is then further suppressed through a coefficient-wise linear minimum mean square error LMMSE estimator in the PCA transform domain. Finally, a non-local means algorithm refines the denoised image by computing weighted averages of pixel intensities and prioritizing neighbourhood similarity over spatial proximity to effectively preserve edges and textures while reducing Gaussian noise. Experimental evaluations on CT and MRI datasets demonstrate that the proposed method achieves superior denoising performance while maintaining high structural similarity and perceptual quality compared to existing state-of-the-art approaches. The method demonstrates adaptability noise reduction capability and preservation of anatomical detail that make it well suited for precision critical medical imaging applications.

摘要

计算机断层扫描(CT)和磁共振成像(MRI)等医学成像系统是临床诊断和治疗规划中的重要工具。然而,这些模态在图像采集过程中固有地容易受到高斯噪声的影响,导致图像质量下降以及关键解剖结构的可视化受损。因此,有效的去噪对于提高诊断准确性同时保留诸如组织纹理和结构边界等精细细节至关重要。本研究提出了一种强大且高效的去噪框架,专门针对受高斯噪声破坏的CT和MRI图像设计。该方法集成了一种由随机矩阵理论中的马尔琴科 - 帕斯图尔(MP)定律引导的聚类主成分分析(PCA)阈值处理方法和一种非局部均值算法。通过分析噪声图像块矩阵的特征值统计分布并利用MP定律来准确确定高斯噪声方差,实现全局噪声水平估计。采用自适应聚类技术根据纹理和边缘等潜在特征对相似块进行分组,并针对异质图像区域进行局部去噪操作。在每个聚类中,去噪分两个阶段进行,首先在奇异值分解(SVD)域中基于MP定律应用硬阈值处理奇异值,以获得保留基本图像内容同时去除噪声主导成分的低秩近似。然后在PCA变换域中通过系数线性最小均方误差(LMMSE)估计器进一步抑制低秩矩阵中的残余噪声。最后,非局部均值算法通过计算像素强度的加权平均值并优先考虑邻域相似性而非空间邻近性来细化去噪图像,从而在减少高斯噪声的同时有效保留边缘和纹理。对CT和MRI数据集的实验评估表明,与现有的最先进方法相比,所提出的方法在保持高结构相似性和感知质量的同时实现了卓越的去噪性能。该方法展示了适应性降噪能力和解剖细节保留能力,使其非常适合精密关键的医学成像应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e324/12227602/3b73218d20bb/41598_2025_8034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验