Suppr超能文献

调整工作时间对减少中国与高温相关的损失及地区差异的潜力:一项建模分析。

Potential of shifting work hours for reducing heat-related loss and regional disparities in China: a modelling analysis.

作者信息

Zhao Mengzhen, Chen Yuyou, Shang Jing, Zhang Shihui, Lu Bo, Miao Yanqing, Lei Mingyu, Li Ruiyao, Cai Wenjia, Zhang Chi

机构信息

School of Management, Beijing Institute of Technology, Beijing, China; School of Global Governance, Beijing Institute of Technology, Beijing, China.

School of Economics, Center for Economic Behavior and Decision-making, Zhejiang University of Finance and Economics, Hangzhou, China.

出版信息

Lancet Planet Health. 2025 Jul 3. doi: 10.1016/S2542-5196(25)00079-8.

Abstract

BACKGROUND

As climate change intensifies, the economic losses caused by heat-related labour productivity loss are gaining increasing attention. Shifting work hours has become a prevalent practice to reduce outdoor workers' heat exposure. However, both the potential of this adaptation measure for reducing labour productivity and economic loss and how this potential will change in the future remain unclear. Answers to these questions at the subnational level are important for decision makers to promote the implementation of adaptations and the development of comprehensive strategies to tackle the residual consequences of climate change. This study aimed to model the potential of shifting work hours for reducing labour productivity and economic loss at the national and provincial level in China.

METHODS

We did a modelling study to estimate the potential of shifting work hours for reducing heat-related labour productivity loss in China under different climate change scenarios. We used the China Hybrid Energy and Economic Research model, a dynamic multiregional computable general equilibrium model, to quantify the economic impacts of heat-related labour productivity loss from 2020 to 2100, with an exposure-response function between heat stress and labour productivity loss and bias-corrected climate change projections from the US National Aeronautics and Space Administration Earth Exchange Global Daily Downscaled Projections dataset conducted under the Coupled Model Intercomparison Project Phase 6 (CMIP6). We used nine different scenarios: three climate change scenarios consistent with the shared socioeconomic pathway (SSP)-representative concentration pathway scenarios used in CMIP6 (SSP1-2·6, SSP2-4·5, and SSP5-8·5); three adaptation scenarios (SSP1-2·6_shift, SSP2-4·5_shift, and SSP5-8·5_shift); and three counterfactual scenarios (SSP1-2·6cf, SSP2-4·5cf, and SSP5-8·5cf). SSP1-2·6 is a scenario with less than 2°C warming by 2100 and low carbon emissions. SSP2-4·5 is a middle scenario with a 2·7°C rise in global mean temperature, representing current emission trends. SSP5-8·5 is an extreme scenario, with a 4·4°C rise in global mean temperature and high carbon emissions. The climate change scenarios and adaptation scenarios considered heat-related labour productivity loss caused by climate change in the future, whereas the counterfactual scenarios held loss constant at the 2020 level. The adaptation scenarios considered the impact of shifting work hours earlier when estimating labour productivity loss. We assumed that outdoor work hours could maximally be rescheduled to sunrise time. The economic growth pathways in the SSP1-2·6cf, SSP2-4·5cf, and SSP5-8·5cf scenarios were derived from SSP1, SSP2, and SSP5, respectively. We compared results for the different adaptation and climate change scenarios to evaluate the reduction potential of the adaptation measure. By comparing the climate, adaptation, and counterfactual scenarios separately, we also estimated the economic loss caused by heat-related labour productivity loss and economic loss. We did not consider specific mitigation measures but rather reflected the influence of mitigation efforts by comparing results under different climate change scenarios.

FINDINGS

Shifting work hours could substantially reduce the impact of heat on labour productivity and economic development in China. The potential of this adaptation strategy for reducing loss was projected to increase with lower levels of temperature rise (ie, under improving mitigation efforts). Compared with the SSP2-4·5 climate change scenario, shifting work hours under the SSP2-4·5_shift scenario was projected to reduce up to 26·2% (uncertainty range 24·8-28·5) of national outdoor labour productivity loss in 2100, leading to a decrease in residual GDP loss from 4·3% to 3·8%. The potential for reducing labour productivity loss was projected to increase to 31·0% (uncertainty range 30·1-34·1) in 2100 under the SSP1-2·6_shift scenario. Considering this synergy between shifting work hours and mitigation measures, our results suggest that only simultaneous implementation of adaptation and mitigation measures could achieve the maximum reduction in residual economic loss. However, even with the implementation of ambitious mitigation measures and the most robust implementation of this adaptation measure, the residual damage resulting from heat-related labour productivity loss could not be completely avoided in our modelling results. Under the most optimistic SSP1-2·6_shift scenario, the residual GDP loss in 2100 was projected to be reduced to 2·0%, equivalent to 54% of the expenditure of China's basic medical insurance fund in 2020 (approximately US$303 billion). Moreover, our results suggested that shifting work hours might reduce development disparities among provinces (this measure cannot change the distribution patterns of economic loss). The largest avoided economic loss was projected in low-income provinces with large agricultural populations, including Guangxi, Guizhou, Hainan, and Jiangxi, whereas high-income regions, including Beijing and Shanghai, were projected to see low proportions of avoided economic loss. In 2100, the reduced economic loss was projected to be 9·4% of GDP loss in Beijing and 7·7% of GDP loss in Guangdong, compared with 42·3% of GDP loss in Guizhou and 19·2% of GDP loss in Sichuan under the SSP2-4·5_shift scenario.

INTERPRETATION

This modelling study suggests that shifting work hours could substantially reduce heat-related labour productivity and economic loss and further reduce development disparities among regions in China. This study contributes to the broader discussion in the literature around the synergistic relationships and trade-offs that exist between climate change adaptation and mitigation measures. Our results show that there are important synergies between shifting work hours (ie, an adaptation measure) and mitigation measures. The effectiveness of this adaptation measure increases with escalating mitigation efforts. However, this single adaptation measure cannot eliminate economic losses entirely. To minimise residual economic loss, local governments will need to implement targeted policies that promote flexible work hours for different regions and develop an integrated adaptation strategy. Moreover, more aggressive mitigation efforts should be pursued together with adaptation measures to minimise residual economic loss.

FUNDING

National Key R&D Program of China, National Natural Science Foundation of China, China Meteorological Administration Climate Change Special Program, Youth Innovation Team of China Meteorological Administration, and China Postdoctoral Science Foundation.

摘要

背景

随着气候变化加剧,与高温相关的劳动生产率损失所造成的经济损失日益受到关注。调整工作时间已成为减少户外工作者高温暴露的普遍做法。然而,这一适应措施在降低劳动生产率和经济损失方面的潜力,以及这种潜力在未来将如何变化,仍不明确。在国家以下层面回答这些问题,对于决策者推动适应措施的实施以及制定应对气候变化残余后果的综合战略非常重要。本研究旨在模拟在中国国家和省级层面调整工作时间以降低劳动生产率和经济损失的潜力。

方法

我们进行了一项建模研究,以估计在不同气候变化情景下,调整工作时间对减少中国与高温相关的劳动生产率损失的潜力。我们使用中国混合能源与经济研究模型,这是一个动态多区域可计算一般均衡模型,来量化2020年至2100年与高温相关的劳动生产率损失的经济影响,利用热应激与劳动生产率损失之间的暴露 - 反应函数,以及来自美国国家航空航天局地球交换全球每日降尺度预测数据集、在耦合模式比较计划第6阶段(CMIP6)下进行的偏差校正气候变化预测。我们使用了九种不同情景:三种与共享社会经济路径(SSP)一致的气候变化情景——CMIP6中使用的代表性浓度路径情景(SSP1 - 2·6、SSP2 - 4·5和SSP5 - 8·5);三种适应情景(SSP1 - 2·6_shift、SSP2 - 4·5_shift和SSP5 - 8·5_shift);以及三种反事实情景(SSP1 - 2·6cf、SSP2 - 4·5cf和SSP5 - 8·5cf)。SSP1 - 2·6是到2100年升温低于2°C且碳排放较低的情景。SSP2 - 4·5是全球平均温度上升2.7°C的中间情景,代表当前排放趋势。SSP5 - 8·5是极端情景,全球平均温度上升4.4°C且碳排放较高。气候变化情景和适应情景考虑了未来气候变化导致的与高温相关的劳动生产率损失,而反事实情景将损失维持在2020年的水平。适应情景在估计劳动生产率损失时考虑了提前调整工作时间的影响。我们假设户外工作时间最多可重新安排到日出时间。SSP1 - 2·6cf、SSP2 - 4·5cf和SSP5 - 8·5cf情景中的经济增长路径分别源自SSP1、SSP2和SSP5。我们比较了不同适应和气候变化情景的结果,以评估该适应措施的减排潜力。通过分别比较气候、适应和反事实情景,我们还估计了与高温相关的劳动生产率损失造成的经济损失和经济损失。我们没有考虑具体的缓解措施,而是通过比较不同气候变化情景下的结果来反映缓解努力的影响。

结果

调整工作时间可大幅降低高温对中国劳动生产率和经济发展的影响。预计这种适应策略在降低损失方面的潜力会随着温度上升水平的降低(即缓解努力的改善)而增加。与SSP2 - 4·5气候变化情景相比,在SSP2 - 4·5_shift情景下调整工作时间预计到2100年可减少高达26.2%(不确定范围为24.8 - 28.5%)的全国户外劳动生产率损失,使残余GDP损失从4.3%降至3.8%。在SSP1 - 2·6_shift情景下,预计到2100年劳动生产率损失的降低潜力将增至31.0%(不确定范围为30.1 - 34.1%)。考虑到调整工作时间与缓解措施之间的这种协同作用,我们的结果表明,只有同时实施适应和缓解措施才能实现残余经济损失的最大减少。然而,即使实施了雄心勃勃的缓解措施以及最有力地实施了这一适应措施,在我们的建模结果中,与高温相关的劳动生产率损失所导致的残余损害仍无法完全避免。在最乐观的SSP1 - 2·6_shift情景下,预计到2100年残余GDP损失将降至2.0%,相当于2020年中国基本医疗保险基金支出的54%(约3030亿美元)。此外,我们的结果表明,调整工作时间可能会减少各省之间的发展差距(该措施无法改变经济损失的分布模式)。预计在农业人口众多的低收入省份,包括广西、贵州、海南和江西,避免的经济损失最大,而包括北京和上海在内的高收入地区,预计避免的经济损失比例较低。在SSP2 - 4·5_shift情景下,到2100年,预计北京减少的经济损失占GDP损失的9.4%,广东为7.7%,而贵州为42.3%,四川为19.2%。

解读

这项建模研究表明,调整工作时间可大幅减少与高温相关的劳动生产率和经济损失,并进一步缩小中国各地区之间的发展差距。本研究有助于在文献中围绕气候变化适应和缓解措施之间存在的协同关系和权衡进行更广泛的讨论。我们的结果表明,调整工作时间(即一种适应措施)与缓解措施之间存在重要的协同作用。这种适应措施的有效性随着缓解努力的增加而提高。然而,这一单一适应措施无法完全消除经济损失。为了将残余经济损失降至最低,地方政府需要实施有针对性的政策,促进不同地区的灵活工作时间,并制定综合适应战略。此外,应与适应措施一起推进更积极的缓解努力,以尽量减少残余经济损失。

资金来源

中国国家重点研发计划、中国国家自然科学基金、中国气象局气候变化专项、中国气象局青年创新团队、中国博士后科学基金。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验