Suppr超能文献

[CRISPR/Cas9技术在血液系统恶性肿瘤嵌合抗原受体T细胞治疗中的应用策略进展]

[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].

作者信息

Wang Y W, Tang Y M

机构信息

Department/Center of Hematology-oncology, Children's Hospital of Zhejiang University School of Medicine; Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province; National Clinical Research Center for Child Health, Hangzhou 310003, China.

出版信息

Zhonghua Xue Ye Xue Za Zhi. 2025 May 14;46(5):481-488. doi: 10.3760/cma.j.cn121090-20240911-00343.

Abstract

Chimeric antigen receptor (CAR) T-cell therapy has achieved breakthroughs in treating relapsed/refractory B-cell malignancies. However, it still faces challenges, including complex manufacturing processes, limited indications, T-cell exhaustion, and insufficient durability of therapeutic efficacy. CRISPR/Cas9, a highly efficient and relatively simple gene-editing technology, offers new avenues for overcoming these limitations. This review briefly outlines the working mechanism of CRISPR/Cas9 and focuses on its recent applications and clinical practices in developing universal CAR T-cells, enhancing T-cell function, and extending CAR T-cell therapy to T-cell and myeloid leukemias. Furthermore, this review highlights optimization strategies developed over the past two years to enhance the editing precision, delivery efficiency, and safety of the CRISPR/Cas9 system, aiming to provide insights for the optimal design and clinical application of CAR T-cell therapy.

摘要

嵌合抗原受体(CAR)T细胞疗法在治疗复发/难治性B细胞恶性肿瘤方面取得了突破。然而,它仍然面临挑战,包括复杂的制造过程、有限的适应症、T细胞耗竭以及治疗效果的持久性不足。CRISPR/Cas9是一种高效且相对简单的基因编辑技术,为克服这些限制提供了新途径。本文简要概述了CRISPR/Cas9的工作机制,并重点介绍了其在开发通用CAR T细胞、增强T细胞功能以及将CAR T细胞疗法扩展至T细胞和髓系白血病方面的最新应用和临床实践。此外,本文还强调了过去两年中为提高CRISPR/Cas9系统的编辑精度、递送效率和安全性而开发的优化策略,旨在为CAR T细胞疗法的优化设计和临床应用提供见解。

相似文献

1
[Advances in the application strategies of CRISPR/Cas9 technology in chimeric antigen receptor T cell therapy for hematological malignancies].
Zhonghua Xue Ye Xue Za Zhi. 2025 May 14;46(5):481-488. doi: 10.3760/cma.j.cn121090-20240911-00343.
3
Current Anti-Myeloma Chimeric Antigen Receptor-T Cells: Novel Targets and Methods.
Balkan Med J. 2025 Jul 1;42(4):301-310. doi: 10.4274/balkanmedj.galenos.2025.2025-4-25.
4
CAR-T cell therapy for patients with hematological malignancies. A systematic review.
Eur J Haematol. 2022 Dec;109(6):601-618. doi: 10.1111/ejh.13851. Epub 2022 Sep 18.
5
Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies.
Mol Ther. 2024 Aug 7;32(8):2444-2460. doi: 10.1016/j.ymthe.2024.05.039. Epub 2024 May 31.
7
Outcomes with chimeric antigen receptor T-cell therapy in Rheumatological disorders: A systematic review.
Transpl Immunol. 2024 Dec;87:102137. doi: 10.1016/j.trim.2024.102137. Epub 2024 Oct 21.
9
Revaccination following CAR-T therapy: a needs assessment.
Hematology. 2025 Dec;30(1):2519865. doi: 10.1080/16078454.2025.2519865. Epub 2025 Jun 23.
10
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.
Cochrane Database Syst Rev. 2021 Sep 13;9(9):CD013365. doi: 10.1002/14651858.CD013365.pub2.

本文引用的文献

1
Allogeneic CD5-specific CAR-T therapy for relapsed/refractory T-ALL: a phase 1 trial.
Nat Med. 2025 Jan;31(1):126-136. doi: 10.1038/s41591-024-03282-2. Epub 2024 Oct 1.
2
Cytokine-mediated CAR T therapy resistance in AML.
Nat Med. 2024 Dec;30(12):3697-3708. doi: 10.1038/s41591-024-03271-5. Epub 2024 Sep 27.
3
Fratricide-resistant CD7-CAR T cells in T-ALL.
Nat Med. 2024 Dec;30(12):3687-3696. doi: 10.1038/s41591-024-03228-8. Epub 2024 Sep 3.
4
On RNA-programmable gene modulation as a versatile set of principles targeting muscular dystrophies.
Mol Ther. 2024 Nov 6;32(11):3793-3807. doi: 10.1016/j.ymthe.2024.08.016. Epub 2024 Aug 22.
5
Enhanced control of RNA modification and CRISPR-Cas activity through redox-triggered disulfide cleavage.
Bioorg Med Chem. 2024 Oct 1;112:117878. doi: 10.1016/j.bmc.2024.117878. Epub 2024 Aug 16.
6
Removal of TREX1 activity enhances CRISPR-Cas9-mediated homologous recombination.
Nat Biotechnol. 2024 Aug 12. doi: 10.1038/s41587-024-02356-3.
7
CD5 deletion enhances the antitumor activity of adoptive T cell therapies.
Sci Immunol. 2024 Jul 19;9(97):eadn6509. doi: 10.1126/sciimmunol.adn6509.
8
Zevorcabtagene Autoleucel: First Approval.
Mol Diagn Ther. 2024 Jul;28(4):501-506. doi: 10.1007/s40291-024-00723-z. Epub 2024 Jun 18.
9
Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells.
Nat Nanotechnol. 2024 Sep;19(9):1409-1417. doi: 10.1038/s41565-024-01680-8. Epub 2024 May 23.
10
Linking CRISPR-Cas9 double-strand break profiles to gene editing precision with BreakTag.
Nat Biotechnol. 2025 Apr;43(4):608-622. doi: 10.1038/s41587-024-02238-8. Epub 2024 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验