Suppr超能文献

对20000例成人和儿童肿瘤的突变过程进行综合分析。

Comprehensive analysis of mutational processes across 20 000 adult and pediatric tumors.

作者信息

Villa Matteo, Malighetti Federica, De Sano Luca, Villa Alberto Maria, Cordani Nicoletta, Aroldi Andrea, Antoniotti Marco, Caravagna Giulio, Graudenzi Alex, Piazza Rocco, Mologni Luca, Ramazzotti Daniele

机构信息

Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan 20126, Italy.

出版信息

Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf648.

Abstract

Despite being a consolidated practice in modern cancer genomics, mutational signature analysis poses various challenges. First, determining the number of signatures is a complex task and depends on heuristics. Second, several signatures lack a clear etiology, raising concerns about whether they result from computational artifacts or actual mutagenic processes. Last, approaches for signature assignment are highly influenced by the catalogue of signatures used for the analysis. To overcome these limitations, we introduce RESOLVE (Robust EStimation Of mutationaL signatures Via rEgularization), a framework designed for the efficient extraction, assignment, and confidence estimation of mutational signatures. RESOLVE enables the stratification of cancer genomes according to the active mutational processes, providing insights into those that are consistently shared among various cancer types. We applied RESOLVE to 20 000 samples from adult and pediatric cancers, providing a comprehensive characterization of subtypes associated with specific mutational processes and alterations in driver genes. Our analysis demonstrates that RESOLVE accurately fits observed mutations with a smaller set of signatures compared to existing catalogues, suggesting the existence of a limited number of dominant mutational processes in cancer genomes. Clustering analysis revealed distinct patient groups characterized by specific signatures, with significant associations between certain signatures and patient prognosis. Additionally, we identified strong associations between signatures and driver gene mutations, offering insights into cancer subtype mechanisms and evolution. Our findings highlight the efficiency of RESOLVE and its potential impact on personalized cancer treatment.

摘要

尽管突变特征分析在现代癌症基因组学中是一种成熟的做法,但它仍面临各种挑战。首先,确定特征的数量是一项复杂的任务,并且依赖于启发式方法。其次,一些特征缺乏明确的病因,这引发了人们对它们是由计算假象还是实际诱变过程导致的担忧。最后,特征分配方法在很大程度上受到用于分析的特征目录的影响。为了克服这些限制,我们引入了RESOLVE(通过正则化对突变特征进行稳健估计),这是一个为有效提取、分配和估计突变特征的置信度而设计的框架。RESOLVE能够根据活跃的突变过程对癌症基因组进行分层,从而深入了解各种癌症类型中一致存在的突变过程。我们将RESOLVE应用于来自成人和儿童癌症的20000个样本,全面描述了与特定突变过程和驱动基因突变改变相关的亚型。我们的分析表明,与现有目录相比,RESOLVE能够用更少的特征集准确拟合观察到的突变,这表明癌症基因组中存在数量有限的主要突变过程。聚类分析揭示了以特定特征为特征的不同患者群体,某些特征与患者预后之间存在显著关联。此外,我们还确定了特征与驱动基因突变之间的强关联,为癌症亚型机制和进化提供了见解。我们的研究结果突出了RESOLVE的效率及其对个性化癌症治疗的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eff/12242766/18543004c7eb/gkaf648figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验