Burchert Holger H, Stringer William W, Dash Ranjan K
Department of Sport, Exercise and Health, University of Basel, Basel, Canton Basel, Switzerland.
Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
Pflugers Arch. 2025 Jul 10. doi: 10.1007/s00424-025-03100-9.
We previously hypothesized that the inflection point of the oxygen dissociation curve (ODC) is linked to the gas exchange threshold (GET) during cardiopulmonary exercise testing. This hypothesis was supported by femoral venous blood gas data sampled during constant exercise below and above the GET, which showed that the ODC shifts rightward at the GET. What had gone unnoticed since these original observations in 1994 was that this rightward shift begins slightly earlier, precisely when the oxygen saturation crosses the ODC inflection point. To investigate this phenomenon, we analyzed the 1994 femoral venous blood gas data obtained during cardiopulmonary exercise testing using a modern validated mechanistic biochemical model of oxygen (O), carbon dioxide (CO), and proton binding to hemoglobin (Hb). We constructed the ODC for each data point, as well as the in vivo ODC-a composite curve reflecting changes in dynamic blood chemistry during exercise-to assess its alignment with the GET. The model revealed that, at the in vitro ODC inflection point (36% OHb saturation), the amounts of CO bound to Hb equalized with HbNH eventually predominating. This equilibrium apparently triggered the Bohr shift, steepening the in vivo ODC to improve O unloading to the tissues. Shortly afterwards, the in vivo ODC reached its inflection point, matching the measured GET. Our findings support that the GET is mechanistically linked to the in vivo ODC inflection point. These results highlight the physiological relevance of determining the ODC inflection point and its alignment with HbNH and CO binding as critical factors in understanding ODC shifts during cardiopulmonary exercise testing.
我们之前曾假设,在心肺运动测试期间,氧解离曲线(ODC)的拐点与气体交换阈值(GET)相关。在GET上下进行持续运动期间采集的股静脉血气数据支持了这一假设,这些数据表明ODC在GET时向右移动。自1994年这些最初的观察以来未被注意到的是,这种向右移动开始得稍早一些,恰好在氧饱和度越过ODC拐点时。为了研究这一现象,我们使用一种经过验证的现代氧(O)、二氧化碳(CO)和质子与血红蛋白(Hb)结合的机制生化模型,分析了1994年心肺运动测试期间获得的股静脉血气数据。我们为每个数据点构建了ODC,以及体内ODC(一条反映运动期间动态血液化学变化的复合曲线),以评估其与GET的一致性。该模型显示,在体外ODC拐点(36%氧合血红蛋白饱和度)时,与Hb结合的CO量最终与HbNH达到平衡并占主导。这种平衡显然引发了波尔效应,使体内ODC变陡,以改善向组织的氧卸载。此后不久,体内ODC达到其拐点,与测得的GET相匹配。我们的研究结果支持GET在机制上与体内ODC拐点相关。这些结果突出了确定ODC拐点及其与HbNH和CO结合的一致性作为理解心肺运动测试期间ODC变化的关键因素的生理相关性。