Bacchetti Emiliano, De Nardin Axel, Giannarini Gianluca, Cereser Lorenzo, Zuiani Chiara, Crestani Alessandro, Girometti Rossano, Foresti Gian Luca
Institute of Radiology, Department of Medicine (DMED), University of Udine, and University Hospital "Santa Maria della Misericordia", ASU FC, P.le S. M. Della Misericordia 15, 33100 Udine, Italy.
Artificial Vision and Machine Learning Laboratory (AVML Lab), Department of Mathematics, Computer Science and Physics (DMIF), University of Udine, Via delle Scienze 206, 33100 Udine, Italy.
Cancers (Basel). 2025 Jul 7;17(13):2257. doi: 10.3390/cancers17132257.
Accurate upfront risk stratification in suspected clinically significant prostate cancer (csPCa) may reduce unnecessary prostate biopsies. Integrating clinical and Magnetic Resonance Imaging (MRI) variables using deep learning could improve prediction. We retrospectively analysed 538 men who underwent MRI and biopsy between April 2019-September 2024. A fully connected neural network was trained using 5-fold cross-validation. Model 1 included clinical features (age, prostate-specific antigen [PSA], PSA density, digital rectal examination, family history, prior negative biopsy, and ongoing therapy). Model 2 used MRI-derived Prostate Imaging Reporting and Data System (PI-RADS) categories. Model 3 used all previous variables as well as lesion size, location, and prostate volume as determined on MRI. Model 3 achieved the highest area under the receiver operating characteristic curve (AUC = 0.822), followed by Model 2 (AUC = 0.778) and Model 1 (AUC = 0.716). Sensitivities for detecting clinically significant prostate cancer (csPCa) were 87.4%, 91.6%, and 86.8% for Models 1, 2, and 3, respectively. Although Model 3 had slightly lower sensitivity than Model 2, it showed higher specificity, reducing false positives and avoiding 43.4% and 21.2% more biopsies compared to Models 1 and 2. Decision curve analysis showed M2 had the highest net benefit at risk thresholds ≤ 20%, while M3 was superior above 20%. Model 3 improved csPCa risk stratification, particularly in biopsy-averse settings, while Model 2 was more effective in cancer-averse scenarios. These models support personalized, context-sensitive biopsy decisions.
在疑似具有临床意义的前列腺癌(csPCa)中进行准确的术前风险分层可减少不必要的前列腺活检。利用深度学习整合临床和磁共振成像(MRI)变量可改善预测。我们回顾性分析了2019年4月至2024年9月期间接受MRI检查和活检的538名男性。使用五折交叉验证训练了一个全连接神经网络。模型1包括临床特征(年龄、前列腺特异性抗原[PSA]、PSA密度、直肠指检、家族史、既往活检阴性和正在进行的治疗)。模型2使用MRI衍生的前列腺影像报告和数据系统(PI-RADS)类别。模型3使用了所有先前的变量以及MRI确定的病变大小、位置和前列腺体积。模型3在受试者工作特征曲线下面积(AUC = 0.822)方面表现最佳,其次是模型2(AUC = 0.778)和模型1(AUC = 0.716)。模型1、2和3检测具有临床意义的前列腺癌(csPCa)的敏感性分别为87.4%、91.6%和86.8%。虽然模型3的敏感性略低于模型2,但其特异性更高,与模型1和2相比,减少了假阳性并避免了多43.4%和21.2%的活检。决策曲线分析表明,在风险阈值≤20%时,模型2的净效益最高,而在20%以上时,模型3更具优势。模型3改善了csPCa风险分层,特别是在不愿接受活检的情况下,而模型2在不愿患癌的情况下更有效。这些模型支持个性化的、根据具体情况做出的活检决策。