Suppr超能文献

一种用于使用超声成像控制多自由度假手的高效人机交互算法。

A Highly Efficient HMI Algorithm for Controlling a Multi-Degree-of-Freedom Prosthetic Hand Using Sonomyography.

作者信息

Nazari Vaheh, Zheng Yong-Ping

机构信息

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.

Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 999077, China.

出版信息

Sensors (Basel). 2025 Jun 26;25(13):3968. doi: 10.3390/s25133968.

Abstract

Sonomyography (SMG) is a method of controlling upper-limb prostheses through an innovative human-machine interface by monitoring forearm muscle activity through ultrasonic imaging. Over the past two decades, SMG has shown promise, achieving over 90% accuracy in classifying hand gestures when combined with artificial intelligence, making it a viable alternative to electromyography (EMG). However, up to now, there are few reports of a system integrating SMG together with a prosthesis for testing on amputee subjects to demonstrate its capability in relation to daily activities. In this study, we developed a highly efficient human-machine interface algorithm for controlling a prosthetic hand with 6-DOF using a wireless and wearable ultrasound imaging probe. We first evaluated the accuracy of our model in classifying nine different hand gestures to determine its reliability and precision. The results from the offline study, which included ten healthy participants, indicated that nine different hand gestures could be classified with a success rate of 100%. Additionally, the developed controlling system was tested in real-time experiments on two amputees, using a variety of hand function test kits. The results from the hand function tests confirmed that the prosthesis, controlled by the SMG system, could assist amputees in performing a variety of hand movements needed in daily activities.

摘要

超声肌动图(SMG)是一种通过创新的人机界面来控制上肢假肢的方法,它通过超声成像监测前臂肌肉活动。在过去二十年中,SMG已展现出潜力,与人工智能结合时,对手势分类的准确率超过90%,使其成为肌电图(EMG)的可行替代方案。然而,到目前为止,很少有关于将SMG与假肢集成在一起,在截肢者身上进行测试以证明其在日常活动方面能力的系统的报道。在本研究中,我们开发了一种高效的人机界面算法,用于使用无线可穿戴超声成像探头控制具有6个自由度的假手。我们首先评估了我们的模型对九种不同手势进行分类的准确性,以确定其可靠性和精度。包括十名健康参与者的离线研究结果表明,九种不同手势的分类成功率可达100%。此外,使用各种手部功能测试套件,在两名截肢者身上对开发的控制系统进行了实时实验测试。手部功能测试结果证实,由SMG系统控制的假肢可以帮助截肢者进行日常活动中所需的各种手部动作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da06/12251556/57423dadd088/sensors-25-03968-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验