Hernandez Sebastian, Schweiger Hunter E, Cline Isabel, Kaurala Gregory A, Robbins Ash, Solis Daniel, Geng Jinghui, van der Molen Tjitse, Reyes Francisco, Asogwa Chinweike Norman, Voitiuk Kateryna, Chini Mattia, Rolandi Marco, Salama Sofie R, Colquitt Bradley M, Sharf Tal, Haussler David, Teodorescu Mircea, Mostajo-Radji Mohammed A
Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, United States.
Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, United States.
bioRxiv. 2025 May 2:2025.05.01.651773. doi: 10.1101/2025.05.01.651773.
The mouse cortex is a canonical model for studying how functional neural networks emerge, yet it remains unclear which topological features arise from intrinsic cellular organization versus external regional cues. Mouse forebrain organoids provide a powerful system to investigate these intrinsic mechanisms. We generated dorsal (DF) and ventral (VF) forebrain organoids from mouse pluripotent stem cells and tracked their development using longitudinal electrophysiology. DF organoids showed progressively stronger network-wide correlations, while VF organoids developed more refined activity patterns, enhanced small-world topology, and increased modular organization. These differences emerged without extrinsic inputs and may be driven by the increased generation of Pvalb interneurons in VF organoids. Our findings demonstrate how variations in cellular composition influence the self-organization of neural circuits, establishing mouse forebrain organoids as a tractable platform to study how neuronal populations shape cortical network architecture.
小鼠皮质是研究功能性神经网络如何形成的经典模型,但尚不清楚哪些拓扑特征源于内在细胞组织与外部区域线索。小鼠前脑类器官提供了一个强大的系统来研究这些内在机制。我们从小鼠多能干细胞生成了背侧(DF)和腹侧(VF)前脑类器官,并使用纵向电生理学跟踪它们的发育。DF类器官显示出全网络范围内逐渐增强的相关性,而VF类器官则形成了更精细的活动模式、增强的小世界拓扑结构和增加的模块化组织。这些差异在没有外部输入的情况下出现,可能是由VF类器官中Pvalb中间神经元生成增加所驱动。我们的研究结果证明了细胞组成的变化如何影响神经回路的自组织,将小鼠前脑类器官确立为一个易于处理的平台,用于研究神经元群体如何塑造皮质网络结构。