Suppr超能文献

基于组织病理学图像的深度学习预测乳腺癌复发风险及化疗获益

Deep Learning on Histopathological Images to Predict Breast Cancer Recurrence Risk and Chemotherapy Benefit.

作者信息

Shamai Gil, Cohen Shachar, Binenbaum Yoav, Sabo Edmond, Cretu Alexandra, Mayer Chen, Barshack Iris, Goldman Tal, Bar-Sela Gil, Polónia António, Howard Frederick M, Pearson Alexander T, Huo Dezheng, Sparano Joseph A, Kimmel Ron, Aran Dvir

机构信息

Taub Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.

Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.

出版信息

medRxiv. 2025 May 16:2025.05.15.25327686. doi: 10.1101/2025.05.15.25327686.

Abstract

Genomic testing has transformed treatment decisions for hormone receptor-positive, HER2-negative (HR+/HER2-) early breast cancer; however, it remains inaccessible to many patients worldwide due to high costs and logistical barriers. Here, we developed an artificial intelligence (AI) model using a multimodal deep learning approach that estimates Oncotype DX 21-gene recurrence scores (RS) from routine histopathology images and clinicopathologic variables, including age at diagnosis, tumor size, and receptor status. Using a foundation model pre-trained on 171,189 histopathological slides, we fine-tuned and validated our AI model on the TAILORx randomized trial (n=8,284). Among 2,407 patients in the TAILORx validation, the model classifies 45.6% of patients as low-risk, 42.4% as intermediate risk, and 12.0% as high-risk. For predicting high genomic risk disease (RS≥26), occurring in 15.9% in the TAILORx validation set, the model achieves AUC=0.898. Patient stratification by our model shows strong prognostic value across multiple clinical endpoints, including recurrence-free interval, distant recurrence-free interval, and disease-free survival. Importantly, chemotherapy benefit is demonstrated for premenopausal patients classified by our model as high AI risk and chemotherapy benefit is ruled out for postmenopausal patients classified as low AI risk. External validation across six independent cohorts (n=5,497 patients) demonstrates robust generalization of the AI model for prognostication and prediction of RS. Notably, in postmenopausal patients, the AI model reclassifies approximately 30% of clinically high-risk cases, defined by the MINDACT criteria, as low-risk. These findings demonstrate that artificial intelligence applied to standard histopathology can be a valuable tool for chemotherapy decision-making in HR+/HER2- early breast cancer. This approach can help reduce unnecessary chemotherapy and extend precision medicine, particularly in resource-limited settings, where genomic testing is not widely accessible.

摘要

基因检测已经改变了激素受体阳性、人表皮生长因子受体2阴性(HR+/HER2-)早期乳腺癌的治疗决策;然而,由于成本高昂和后勤障碍,全球许多患者仍然无法进行基因检测。在此,我们使用多模态深度学习方法开发了一种人工智能(AI)模型,该模型可根据常规组织病理学图像和临床病理变量(包括诊断时的年龄、肿瘤大小和受体状态)估算Oncotype DX 21基因复发评分(RS)。我们使用在171,189张组织病理学切片上预训练的基础模型,在TAILORx随机试验(n = 8,284)上对我们的AI模型进行了微调与验证。在TAILORx验证的2407例患者中,该模型将45.6%的患者分类为低风险,42.4%为中度风险,12.0%为高风险。对于预测高基因组风险疾病(RS≥26),在TAILORx验证集中发生率为15.9%,该模型的曲线下面积(AUC)= 0.898。我们的模型进行的患者分层在多个临床终点显示出强大的预后价值,包括无复发生存期、远处无复发生存期和无病生存期。重要的是,我们的模型分类为高AI风险的绝经前患者显示出化疗获益,而分类为低AI风险的绝经后患者则排除化疗获益。在六个独立队列(n = 5,497例患者)中的外部验证证明了该AI模型在预后和RS预测方面具有强大的泛化能力。值得注意的是,在绝经后患者中,AI模型将约30%根据MINDACT标准定义的临床高风险病例重新分类为低风险。这些发现表明,应用于标准组织病理学的人工智能可以成为HR+/HER2-早期乳腺癌化疗决策的有价值工具。这种方法有助于减少不必要的化疗并扩展精准医学,特别是在资源有限的环境中,那里基因检测并不广泛可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175a/12258777/12b9b3b8b99b/nihpp-2025.05.15.25327686v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验