D'Antuono Matthew, Sharp Madison, Chowdary Rishika, Ivan Michael E, Komotar Ricardo J, Suter Robert K, Ayad Nagi G
Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
bioRxiv. 2025 Jun 8:2024.12.04.626873. doi: 10.1101/2024.12.04.626873.
Intratumor heterogeneity in glioblastoma (GBM) impedes successful treatment as it is not obvious which tumor cells should be targeted. Here, we posit that single-cell-resolution transcriptomic data can be integrated with loss-of-function screens to identify the most critical cells to target within a tumor. We parsed CRISPR screen data from the Dependency Map (DepMap) Consortium and identified a GBM Dependency Signature (GDS) - 168 genes that are essential for GBM cell viability in vitro. Through similarity scoring of GDS transcriptomic profiles in single-cell RNA-sequencing (scRNA-seq) data and iterative hierarchical clustering, we identify and report 3 single-cell vulnerability states (VS) characterized in 49 GBM tumors using both scRNA-seq and spatial transcriptomic data. These VS reflect single-cell gene dependencies and differ significantly in enrichment profiles and spatial distributions. Additionally, each VS is differently sensitive to cancer drugs, with VS2 solely responsive to temozolomide treatment. Importantly, the proportion of VS in each GBM tumor is variable, suggesting a means of stratifying patients in clinical trials. Collectively, we have developed a novel computational pipeline to identify unique vulnerability states in GBM and other cancers, which can be used to identify existing or novel drugs for incurable diseases.
胶质母细胞瘤(GBM)中的肿瘤内异质性阻碍了治疗的成功,因为不清楚应该靶向哪些肿瘤细胞。在这里,我们假设单细胞分辨率的转录组数据可以与功能丧失筛选相结合,以识别肿瘤内最关键的靶向细胞。我们解析了来自依赖性图谱(DepMap)联盟的CRISPR筛选数据,并确定了一个GBM依赖性特征(GDS)——168个对GBM细胞体外生存能力至关重要的基因。通过对单细胞RNA测序(scRNA-seq)数据中GDS转录组图谱的相似性评分和迭代层次聚类,我们使用scRNA-seq和空间转录组数据识别并报告了49个GBM肿瘤中特征化的3种单细胞脆弱状态(VS)。这些VS反映了单细胞基因依赖性,在富集图谱和空间分布上有显著差异。此外,每种VS对癌症药物的敏感性不同,其中VS2仅对替莫唑胺治疗有反应。重要的是,每个GBM肿瘤中VS的比例是可变的,这为临床试验中的患者分层提供了一种方法。总体而言,我们开发了一种新颖的计算流程来识别GBM和其他癌症中的独特脆弱状态,可用于识别针对不治之症的现有或新型药物。