Bresnahan Sean T, Yong Hannah, Wu William H, Lopez Sierra, Yen Chan Jerry Kok, White Frédérique, Jacques Pierre-Étienne, Hivert Marie-France, Chan Shiao-Yng, Love Michael I, Huang Jonathan Y, Bhattacharya Arjun
The University of Texas MD Anderson Cancer Center, Department of Epidemiology, Houston, TX.
A*STAR Institute for Human Development and Potential, Singapore, Singapore.
bioRxiv. 2025 Jun 27:2025.06.26.661362. doi: 10.1101/2025.06.26.661362.
The placenta plays a critical role in fetal development and mediates maternal metabolic effects on offspring health outcomes. Despite its importance, the placenta remains understudied in large-scale genomic initiatives, with most analyses focusing on gene-level expression based on annotations from adult tissue references that obscure isoform diversity particularly vital to understanding function in developmental tissues. Here, we employed largest-in-class long-read RNA sequencing (N = 72) to generate a comprehensive placental transcript reference, yielding 37,661 high-confidence isoforms across 12,302 genes. Our assembly revealed 14,985 novel isoforms of known genes and 2,759 transcripts representing previously unannotated genes, with extensive diversity in genes involved in obesity, placental lactogen production, and growth control. We demonstrate this approach has two immediate practical advantages: First, the improved reference reduced inferential uncertainty in isoform quantification by approximately 37%, reduced the frequency of low-confidence annotations and increased the yield (read depth) of high-confidence annotations. Second, in analyses of gestational diabetes mellitus (GDM) with short-read RNA-seq datasets from two independent, multi-ancestry birth cohorts (N = 344) as an exemplar, we were able to identify novel isoforms of chorionic somatomammotropin hormone 1 () mediating the effect of maternal hyperglycemia on birth weight that was not apparent in conventional gene-level analyses. These findings demonstrate that isoform-level annotation of placental transcriptomics provides greater sensitivity and specificity than gene-level approaches. This enhanced precision may be essential for understanding placental function in developmental programming of metabolism and reveal ancestry- and context-specific variation in placental function and responses to environmental exposures.
胎盘在胎儿发育中起着关键作用,并介导母体代谢对后代健康结果的影响。尽管胎盘很重要,但在大规模基因组计划中对其研究仍不足,大多数分析集中在基于成人组织参考注释的基因水平表达上,这掩盖了异构体多样性,而异构体多样性对于理解发育组织中的功能尤为重要。在这里,我们采用了同类中最大规模的长读长RNA测序(N = 72)来生成一个全面的胎盘转录本参考,在12302个基因中产生了37661个高可信度异构体。我们的组装揭示了14985个已知基因的新异构体和2759个代表以前未注释基因的转录本,在涉及肥胖、胎盘催乳素产生和生长控制的基因中具有广泛的多样性。我们证明这种方法有两个直接的实际优势:第一,改进后的参考将异构体定量中的推断不确定性降低了约37%,减少了低可信度注释的频率,并提高了高可信度注释的产量(读取深度)。第二,作为一个例子,在对来自两个独立的多血统出生队列(N = 344)的短读长RNA测序数据集进行妊娠期糖尿病(GDM)分析时,我们能够识别出绒毛膜生长催乳素1()的新异构体,该异构体介导了母体高血糖对出生体重的影响,而这在传统的基因水平分析中并不明显。这些发现表明,胎盘转录组学的异构体水平注释比基因水平方法具有更高的敏感性和特异性。这种提高的精度对于理解胎盘在代谢发育编程中的功能以及揭示胎盘功能和对环境暴露反应的祖先和背景特异性变异可能至关重要。