Suppr超能文献

用于表征斑马鱼幼体运动行为的高通量机器学习流程

High throughput machine learning pipeline to characterize larval zebrafish motor behavior.

作者信息

Hageter John, Efromson John, Alban Brooke, DelGaudio Audrey, Saliu Veton, Wassef Monica, Harfouche Mark, Horstick Eric J

机构信息

West Virginia University, Department of Biology, Morgantown, WV, USA.

Equal contribution.

出版信息

bioRxiv. 2025 Jun 17:2025.06.17.660164. doi: 10.1101/2025.06.17.660164.

Abstract

Using machine learning, we developed models that rigorously detect and classify larval zebrafish spontaneous and stimulus-evoked behaviors in various well plate formats. Zebrafish are an ideal model system for investigating the neural substrates underlying behavior due to their simple nervous system and well-documented responses to environmental stimuli. To track movement, we utilized an 8 key point pose estimation model, allowing precise capture of zebrafish kinematics. Using this kinematic data, we trained two random forest classifiers in a semi-supervised learning framework to classify various discreet behavioral outputs including stationary, scoot, turn, acoustic-startle like behavior, and visual-startle like behavior. The classifiers were trained on a manually labeled dataset, and their accuracy was validated showing high precision. To validate our machine learning models, we analyzed behavioral outputs during various stimulus evoked responses and during spontaneous behavior. For additional validation, and to show the utility of our recording and analysis pipeline, we investigated the locomotor effects of several established drugs with well-defined impacts on neurophysiology. Here we show that machine learning model development, enabled by semi-supervised learning developed classification models, provide detailed insights into the behavioral phenotypes of zebrafish, offering a powerful, high throughput method for studying neural control of behavior.

摘要

我们利用机器学习开发了一些模型,这些模型能够在各种微孔板形式下严格检测和分类斑马鱼幼体的自发行为和刺激诱发行为。斑马鱼因其简单的神经系统以及对环境刺激有充分记录的反应,是研究行为背后神经基础的理想模型系统。为了追踪运动,我们使用了一个8关键点姿态估计模型,从而能够精确捕捉斑马鱼的运动学特征。利用这些运动学数据,我们在半监督学习框架中训练了两个随机森林分类器,以对各种离散的行为输出进行分类,包括静止、 scoot(一种行为,未明确中文释义)、转弯、类似听觉惊吓的行为以及类似视觉惊吓的行为。分类器在一个手动标注的数据集上进行训练,其准确性经过验证显示出高精度。为了验证我们的机器学习模型,我们分析了各种刺激诱发反应期间以及自发行为期间的行为输出。为了进行额外的验证,并展示我们的记录和分析流程的实用性,我们研究了几种对神经生理学有明确影响且已确定的药物的运动效应。在此我们表明,通过半监督学习实现的机器学习模型开发提供了分类模型,能够深入了解斑马鱼的行为表型,为研究行为的神经控制提供了一种强大的高通量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc2/12262660/381c691b5cd2/nihpp-2025.06.17.660164v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验