Park Seung-Geun, Lee Eunseo, Kim Hyun-Yi, Yoon Tae Hyun
Department of Chemistry, Hanyang University, Seoul, Republic of Korea.
NGeneS Inc., Ansan-si, Republic of Korea.
NPJ Syst Biol Appl. 2025 Jul 19;11(1):80. doi: 10.1038/s41540-025-00561-7.
Silver nanoparticles (AgNPs) are widely used in industrial and biomedical applications, however, their toxicity mechanisms at the molecular level are not completely understood. To address this gap, we investigate the temporal dynamics of gene expression in human lung epithelial cells exposed to AgNPs, integrating transcriptomic analysis, gene ontology (GO) enrichment, protein-protein interaction (PPI) networks, and dynamic simulations. GO analysis highlights early activation of ribosomal biogenesis and stress pathways, transitioning DNA repair and cell cycle regulation at later stages. PPI networks identify ribosomal proteins and DNA damage regulators as key hub genes. Dynamic simulations modeled gene expression changes over 48 hours, uncovering sequential activation of stress response genes, followed by DNA repair attempts and apoptotic signaling as cellular damage persisted. Through modeling the interplay between molecular responses and cell viability, the simulations provided a predictive temporal framework for advancing nanotoxicology research, providing insights into AgNPs-induced molecular disturbances, contributing to safety assessments.
银纳米颗粒(AgNPs)广泛应用于工业和生物医学领域,然而,其在分子水平上的毒性机制尚未完全明确。为填补这一空白,我们通过整合转录组分析、基因本体(GO)富集分析、蛋白质-蛋白质相互作用(PPI)网络和动态模拟,研究了暴露于AgNPs的人肺上皮细胞中基因表达的时间动态变化。GO分析表明核糖体生物合成和应激途径早期被激活,后期转变为DNA修复和细胞周期调控。PPI网络将核糖体蛋白和DNA损伤调节因子识别为关键枢纽基因。动态模拟对48小时内的基因表达变化进行建模,揭示了应激反应基因的顺序激活,随后随着细胞损伤持续,出现DNA修复尝试和凋亡信号。通过对分子反应与细胞活力之间的相互作用进行建模,这些模拟为推进纳米毒理学研究提供了一个预测性的时间框架,深入了解了AgNPs诱导的分子干扰,有助于安全性评估。