Xie Ning, Zhang XiaoLu, Lu Changchun
School of Physical Education Major, Leshan Normal University, Leshan, 614000, Sichuan, China.
Leshan Normal University Physical Culture Institute, Leshan, 61400, Sichuan, China.
Sci Rep. 2025 Jul 18;15(1):26156. doi: 10.1038/s41598-025-05420-3.
Motivation is a key psychological factor influencing athletic performance, especially in high-intensity disciplines such as track and field. However, traditional assessment methods-ranging from self-report questionnaires to static physiological models-often fail to capture the temporal, individualized, and context-dependent nature of the motivation-performance relationship. In this study, we propose a hybrid EEG-based framework for modeling motivational states and forecasting athletic performance. The framework integrates neural indicators of arousal and stress with contextual and biomechanical variables using a dual-attention predictive architecture and a personalized adaptation mechanism. Rather than focusing on static prediction, the model dynamically adjusts to individual athletes' cognitive and physical states across training scenarios. Experimental validation on four public datasets, including two movement-oriented sets (MoBI and HASC), demonstrates consistent gains over strong baselines, with up to 3.5% improvement in accuracy and 7.6% improvement in early fatigue prediction. These findings suggest that the proposed system can support personalized monitoring and adaptive training strategies in performance-driven environments.
动机是影响运动表现的关键心理因素,在田径等高强度项目中尤为如此。然而,传统的评估方法——从自我报告问卷到静态生理模型——往往无法捕捉动机与表现关系的时间性、个性化和情境依赖性。在本研究中,我们提出了一个基于脑电图的混合框架,用于对动机状态进行建模并预测运动表现。该框架使用双注意力预测架构和个性化适应机制,将唤醒和压力的神经指标与情境和生物力学变量相结合。该模型不是专注于静态预测,而是在不同训练场景中动态适应个体运动员的认知和身体状态。在四个公共数据集上进行的实验验证,包括两个面向运动的数据集(MoBI和HASC),表明相对于强大的基线有持续的提升,准确率提高了3.5%,早期疲劳预测提高了7.6%。这些发现表明,所提出的系统可以在以表现为驱动的环境中支持个性化监测和适应性训练策略。