Agarwal Aditya A, Harrang James, Noble David, McGowan Kerry L, Lange Adrian W, Engelhart Emily, Lahman Miranda C, Adamo Jeffrey, Yu Xin, Serang Oliver, Minch Kyle J, Wellman Kimberly Y, Younger David A, Lopez Randolph M, Emerson Ryan O
Data Science, A-Alpha Bio Inc, Seattle, WA, USA.
Healthcare & Life Sciences, Nvidia Corporation, Santa Clara, CA, USA.
MAbs. 2025 Dec;17(1):2534626. doi: 10.1080/19420862.2025.2534626. Epub 2025 Jul 22.
Antibodies are versatile therapeutic molecules that use combinatorial sequence diversity to cover a vast fitness landscape. Designing optimal antibody sequences, however, remains a major challenge. Recent advances in deep learning provide opportunities to address this challenge by learning sequence-function relationships to accurately predict fitness landscapes. These models enable efficient prescreening and optimization of antibody candidates. By focusing experimental efforts on the most promising candidates guided by deep learning predictions, antibodies with optimal properties can be designed more quickly and effectively. Here we present AlphaBind, a domain-specific model that uses protein language model embeddings and pre-training on millions of quantitative laboratory measurements of antibody-antigen binding strength to achieve state-of-the-art performance for guided affinity optimization of parental antibodies. We demonstrate that an AlphaBind-powered antibody optimization pipeline can deliver candidates with substantially improved binding affinity across four parental antibodies (some of which were already affinity-matured) and using two different types of training data. The resulting candidates, which include up to 11 mutations from parental sequence, yield a sequence diversity that allows optimization of other biophysical characteristics, all while using only a single round of data generation for each parental antibody. AlphaBind weights and code are publicly available at: https://github.com/A-Alpha-Bio/alphabind.
抗体是多功能治疗分子,利用组合序列多样性覆盖广阔的适应性景观。然而,设计最佳抗体序列仍然是一项重大挑战。深度学习的最新进展提供了通过学习序列-功能关系来准确预测适应性景观以应对这一挑战的机会。这些模型能够对抗体候选物进行高效预筛选和优化。通过将实验工作集中在深度学习预测指导下最有前景的候选物上,可以更快、更有效地设计出具有最佳特性的抗体。在此,我们展示了AlphaBind,这是一种特定结构域的模型,它使用蛋白质语言模型嵌入,并基于数百万次抗体-抗原结合强度的定量实验室测量进行预训练,以在亲本抗体的导向亲和力优化方面实现最先进的性能。我们证明,由AlphaBind驱动的抗体优化流程可以在四种亲本抗体(其中一些已经进行了亲和力成熟)上,使用两种不同类型的训练数据,提供具有显著提高的结合亲和力的候选物。所得的候选物包含来自亲本序列的多达11个突变,产生的序列多样性允许优化其他生物物理特性,同时每个亲本抗体仅使用一轮数据生成。AlphaBind的权重和代码可在以下网址公开获取:https://github.com/A-Alpha-Bio/alphabind 。