Suppr超能文献

剖析关键优先真菌病原体中的生物膜:用于深入了解机制和发现新靶点的蛋白质组学与计算创新

Breaking down biofilms across critical priority fungal pathogens: proteomics and computational innovation for mechanistic insights and new target discovery.

作者信息

Romero Oscar, Geddes-McAlister Jennifer

机构信息

Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.

出版信息

mBio. 2025 Aug 13;16(8):e0230324. doi: 10.1128/mbio.02303-24. Epub 2025 Jul 22.

Abstract

Fungal biofilms are complex microbial structures associated with persistent and progressive infections, such as cryptococcal meningitis, invasive aspergillosis, and invasive candidiasis, leading to thousands of deaths annually. The prevalence of fungal biofilm formation during infections, with its heightened resistance to antifungal drugs, highlights the urgency for the discovery and development of new antifungals with antibiofilm activity. Current advances in mass spectrometry-based proteomics and computational platforms provide a powerful toolkit to accelerate drug discovery from target identification to optimization of a lead molecule. In this review, we highlight fungal biofilms of four critical priority fungal pathogens (as deemed by the World Health Organization) and define important technological considerations for proteomics and computational methodologies. Additionally, we explore recent proteomics and computational applications within fungal biofilms for the identification and elucidation of biological mechanisms underscoring biofilm formation as well as the discovery of novel putative antibiofilm targets.

摘要

真菌生物膜是与持续性和进行性感染相关的复杂微生物结构,如隐球菌性脑膜炎、侵袭性曲霉病和侵袭性念珠菌病,每年导致数千人死亡。感染期间真菌生物膜形成的普遍性及其对抗真菌药物的高度耐药性,凸显了发现和开发具有抗生物膜活性的新型抗真菌药物的紧迫性。基于质谱的蛋白质组学和计算平台的当前进展提供了一个强大的工具包,以加速从靶点识别到先导分子优化的药物发现。在这篇综述中,我们重点介绍了四种关键优先真菌病原体(世界卫生组织认定)的真菌生物膜,并定义了蛋白质组学和计算方法的重要技术考量。此外,我们探讨了真菌生物膜内蛋白质组学和计算方法的最新应用,以识别和阐明生物膜形成背后的生物学机制以及发现新的假定抗生物膜靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43c1/12345193/1ec6075cb480/mbio.02303-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验