Suppr超能文献

利用可持续碳源和能源进行微生物法生产燃料、大宗化学品及材料。

Microbial Production of Fuels, Commodity Chemicals, and Materials from Sustainable Sources of Carbon and Energy.

作者信息

Cowan Aidan E, Klass Sarah H, Winegar Peter H, Keasling Jay D

机构信息

Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA.

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Curr Opin Syst Biol. 2023 Dec;36. doi: 10.1016/j.coisb.2023.100482. Epub 2023 Oct 31.

Abstract

Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (., plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.

摘要

人为碳排放正在推动地球气候的快速变化,扰乱整个生态系统,并危及人类社会的稳定。工程微生物发酵技术的创新能够实现无化石资源的燃料、商品化学品和材料生产,从而减少与这些产品相关的碳排放。微生物经过工程改造后能够分解可持续的碳源和能源(如植物生物质、塑料垃圾和一碳原料),并生物合成碳中和或碳负产品。这些工程努力利用并优化天然生物途径,或生成非天然途径,从而生物合成那些无法通过合成化学获得的化学品。微生物发酵领域的最新进展不仅旨在最大化所需产品的滴度、速率和产量,还致力于调整微生物分解代谢以利用廉价原料。最终,这些进展旨在降低生物生产的成本,使微生物衍生的化学品在经济上能够与化石衍生的化学品竞争。

相似文献

1
Microbial Production of Fuels, Commodity Chemicals, and Materials from Sustainable Sources of Carbon and Energy.
Curr Opin Syst Biol. 2023 Dec;36. doi: 10.1016/j.coisb.2023.100482. Epub 2023 Oct 31.
2
Towards sustainable biodiesel production: efficient utilization of animal fat wastes and shell-derived catalysts.
Environ Sci Pollut Res Int. 2025 May;32(24):14383-14404. doi: 10.1007/s11356-025-36540-y. Epub 2025 May 30.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
6
A review of biofuels and bioenergy production as a sustainable alternative: opportunities, challenges and future perspectives.
J Environ Health Sci Eng. 2025 Jul 17;23(2):23. doi: 10.1007/s40201-025-00946-0. eCollection 2025 Dec.
7
Estimates of emissions from hydrogen transportation fueling infrastructure and vehicles.
J Air Waste Manag Assoc. 2025 Jul;75(7):559-590. doi: 10.1080/10962247.2025.2495811. Epub 2025 Jun 16.
8
Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.
Nat Biotechnol. 2022 Mar;40(3):335-344. doi: 10.1038/s41587-021-01195-w. Epub 2022 Feb 21.
9
Carbon-conserving bioproduction of malate in an E. coli-based cell-free system.
Metab Eng. 2025 Sep;91:59-76. doi: 10.1016/j.ymben.2025.03.020. Epub 2025 Apr 8.
10
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum.
Molecules. 2025 Jun 25;30(13):2734. doi: 10.3390/molecules30132734.

引用本文的文献

1
Expanding catalytic versatility of modular polyketide synthases for alcohol biosynthesis.
Nat Chem Biol. 2025 Apr 18. doi: 10.1038/s41589-025-01883-7.

本文引用的文献

1
Enzymatic degradation of plant biomass and synthetic polymers.
Nat Rev Chem. 2020 Mar;4(3):114-126. doi: 10.1038/s41570-020-0163-6. Epub 2020 Feb 21.
2
Dynamic upregulation of the rate-limiting enzyme for valerolactam biosynthesis in Corynebacterium glutamicum.
Metab Eng. 2023 May;77:89-99. doi: 10.1016/j.ymben.2023.02.005. Epub 2023 Mar 16.
3
Complete Depolymerization of PET Wastes by an Evolved PET Hydrolase from Directed Evolution.
Angew Chem Int Ed Engl. 2023 Mar 27;62(14):e202218390. doi: 10.1002/anie.202218390. Epub 2023 Feb 21.
4
Optimizing as a formatotrophic platform for bioproduction the reductive glycine pathway.
Front Bioeng Biotechnol. 2023 Jan 16;11:1091899. doi: 10.3389/fbioe.2023.1091899. eCollection 2023.
5
Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity.
Nat Commun. 2022 Dec 21;13(1):7850. doi: 10.1038/s41467-022-35237-x.
7
Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers.
Chem Rev. 2023 Mar 8;123(5):2609-2734. doi: 10.1021/acs.chemrev.2c00354. Epub 2022 Oct 13.
8
Polymer Chemistry in Living Cells.
Acc Chem Res. 2022 Oct 18;55(20):2998-3009. doi: 10.1021/acs.accounts.2c00420. Epub 2022 Sep 30.
9
Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery.
Biotechnol Adv. 2022 Nov;60:107991. doi: 10.1016/j.biotechadv.2022.107991. Epub 2022 May 30.
10
Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review.
RSC Adv. 2021 May 10;11(28):17151-17196. doi: 10.1039/d1ra02390j. eCollection 2021 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验