Cowan Aidan E, Klass Sarah H, Winegar Peter H, Keasling Jay D
Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA.
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Curr Opin Syst Biol. 2023 Dec;36. doi: 10.1016/j.coisb.2023.100482. Epub 2023 Oct 31.
Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (., plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbon-neutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.
人为碳排放正在推动地球气候的快速变化,扰乱整个生态系统,并危及人类社会的稳定。工程微生物发酵技术的创新能够实现无化石资源的燃料、商品化学品和材料生产,从而减少与这些产品相关的碳排放。微生物经过工程改造后能够分解可持续的碳源和能源(如植物生物质、塑料垃圾和一碳原料),并生物合成碳中和或碳负产品。这些工程努力利用并优化天然生物途径,或生成非天然途径,从而生物合成那些无法通过合成化学获得的化学品。微生物发酵领域的最新进展不仅旨在最大化所需产品的滴度、速率和产量,还致力于调整微生物分解代谢以利用廉价原料。最终,这些进展旨在降低生物生产的成本,使微生物衍生的化学品在经济上能够与化石衍生的化学品竞争。