Suppr超能文献

连续时间随机游走和分数阶微积分模型对胶质瘤生物标志物(包括 、 、 和 )在分化方面的直方图分析。 需注意,原文中部分生物标志物名称处为空格,可能存在信息不完整的情况,你可补充完整准确信息后再让我翻译。

Continuous-time random walk and fractional order calculus models histogram analysis of glioma biomarkers, including , , , and , on differentiation.

作者信息

Ding Yujie, Zhu Hongquan, Li Yuanhao, Liu Yufei, Xie Yan, Zhang Jiaxuan, Fu Yan, Li Shihui, Li Li, Shen Nanxi, Zhu Wenzhen

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Quant Imaging Med Surg. 2025 Jul 1;15(7):6118-6136. doi: 10.21037/qims-2024-2725. Epub 2025 Jun 30.

Abstract

BACKGROUND

The focus of neuro-oncology research has changed from histopathologic grading to molecular characteristics, and medical imaging routinely follows this change. This study aimed to demonstrate the feasibility of using continuous-time random walk (CTRW) and fractional order calculus (FROC) models, together with histogram analysis, in identifying the states of molecular biomarkers of diffuse gliomas in adults.

METHODS

A total of 111 diffuse glioma patients undergoing multi-b-value diffusion-weighted imaging (DWI) were included. The histogram parameters of CTRW, FROC, and mono-exponential models were compared between diffuse gliomas with different molecular states [isocitrate dehydrogenase 1 (), X-linked alpha-thalassemia/mental retardation syndrome (), O6-methylguanine-DNA methyltransferase (), and telomere reverse transcriptase ()] using independent samples -test or Mann-Whitney test. The diagnostic performance of each diffusion parameter was evaluated using receiver operating characteristic (ROC) curve.

RESULTS

Statistically significant differences (P<0.05) were found between -mutant and wildtype gliomas in all diffusion parameters except for the kurtosis D, 90 percentile α, kurtosis β, 90 percentile µ, and kurtosis apparent diffusion coefficient (ADC). Moreover, the areas under the curve (AUCs) of the 10 percentile β, as well as the 10 percentile, mean, and median β were significantly higher than all ADC histogram parameters following the DeLong test (P<0.05) in genotyping. The 90th percentile ADC (AUC =0.797) provided the highest diagnostic efficiency among individual parameters in genotyping of -mutant gliomas. The median β (AUC =0.758) and 10 percentile β (AUC =0.869) provided the highest differential efficiency for and , respectively.

CONCLUSIONS

The CTRW and FROC models demonstrate good diagnostic performance in predicting different molecular subtypes in diffuse gliomas, and provide new imaging biomarkers for probing tumor structural heterogeneity at a subvoxel level.

摘要

背景

神经肿瘤学研究的重点已从组织病理学分级转向分子特征,医学成像通常也随之改变。本研究旨在证明使用连续时间随机游走(CTRW)和分数阶微积分(FROC)模型以及直方图分析来识别成人弥漫性胶质瘤分子生物标志物状态的可行性。

方法

共纳入111例接受多b值扩散加权成像(DWI)的弥漫性胶质瘤患者。使用独立样本t检验或曼-惠特尼U检验比较不同分子状态[异柠檬酸脱氢酶1(IDH1)、X连锁α地中海贫血/智力发育迟缓综合征(ATRX)、O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)和端粒逆转录酶(TERT)]的弥漫性胶质瘤之间CTRW、FROC和单指数模型的直方图参数。使用受试者操作特征(ROC)曲线评估每个扩散参数的诊断性能。

结果

除峰度D、第90百分位数α、峰度β、第90百分位数μ和表观扩散系数(ADC)峰度外,IDH1突变型和野生型胶质瘤在所有扩散参数上均存在统计学显著差异(P<0.05)。此外,在IDH1基因分型中,经德龙检验(P<0.05),第10百分位数β以及第10百分位数、均值和中位数β的曲线下面积(AUC)显著高于所有ADC直方图参数。在IDH1突变型胶质瘤的基因分型中,第90百分位数ADC(AUC =0.797)在各个参数中提供了最高的诊断效率。中位数β(AUC =0.758)和第10百分位数β(AUC =0.869)分别为ATRX和MGMT提供了最高的鉴别效率。

结论

CTRW和FROC模型在预测弥漫性胶质瘤不同分子亚型方面显示出良好的诊断性能,并为在亚体素水平探测肿瘤结构异质性提供了新的成像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d24/12290656/4481e8811f30/qims-15-07-6118-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验