Suppr超能文献

从网络拓扑结构中揭示生化反应系统的分岔行为。

Uncovering bifurcation behaviors of biochemical reaction systems from network topology.

作者信息

Huang Yong-Jin, Okada Takashi, Mochizuki Atsushi

机构信息

Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.

Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.

出版信息

Sci Rep. 2025 Jul 29;15(1):27596. doi: 10.1038/s41598-025-10688-6.

Abstract

The regulation of biological functions is achieved through the modulation of biochemical reaction network dynamics. The diversity of cell states and the transitions between them have been interpreted as bifurcations in these dynamics. However, due to the complexity of networks and limited knowledge of reaction kinetics, bifurcation behaviors in biological systems remain largely underexplored. To address this, we developed a mathematical method, Structural Bifurcation Analysis (SBA), which decomposes the system into substructures and determines important aspects of bifurcation behaviors-such as substructures responsible for bifurcation conditions, bifurcation-inducing parameters, and bifurcating variables-solely from network topology. We establish a direct relationship between SBA and classical bifurcation analysis, enabling the study of systems even in the presence of conserved quantities. Additionally, we provide a step-by-step bifurcation analysis for general use. We applied our method to the macrophage M1/M2 polarization system. Our analysis reveals that the network structure strongly constrains possible patterns of polarization. We also clarify the dependency of the M1/M2 balance on gene expression levels and predict the emergence of intermediate polarization patterns under gene deletions, including SOCS3, which are experimentally testable.

摘要

生物功能的调节是通过生化反应网络动力学的调控来实现的。细胞状态的多样性及其之间的转变被解释为这些动力学中的分岔现象。然而,由于网络的复杂性以及对反应动力学的了解有限,生物系统中的分岔行为在很大程度上仍未得到充分探索。为了解决这一问题,我们开发了一种数学方法——结构分岔分析(SBA),该方法将系统分解为子结构,并仅从网络拓扑结构确定分岔行为的重要方面,如负责分岔条件的子结构、诱导分岔的参数和分岔变量。我们建立了SBA与经典分岔分析之间的直接关系,即使在存在守恒量的情况下也能对系统进行研究。此外,我们提供了一个供一般使用的分步分岔分析方法。我们将我们的方法应用于巨噬细胞M1/M2极化系统。我们的分析表明,网络结构强烈限制了可能的极化模式。我们还阐明了M1/M2平衡对基因表达水平的依赖性,并预测了在基因缺失(包括SOCS3)情况下中间极化模式的出现,这些都是可以通过实验验证的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验