Suppr超能文献

基于纳米技术的mRNA疫苗。

Nanotechnology-based mRNA vaccines.

作者信息

Chen Shuying, Huang Xiangang, Xue Yonger, Álvarez-Benedicto Ester, Shi Yesi, Chen Wei, Koo Seyoung, Siegwart Daniel J, Dong Yizhou, Tao Wei

机构信息

Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

These authors contributed equally: Shuying Chen, Xiangang Huang, Yonger Xue, Ester Álvarez-Benedicto.

出版信息

Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.

Abstract

mRNA vaccines have emerged as a revolutionary tool to generate rapid and precise immune responses against infectious diseases and cancers. Compared with conventional vaccines such as inactivated viruses, viral vectors, protein subunits or DNA-based vaccines, mRNA vaccines stand out owing to multiple advantages, including simplicity of design, fast production, enhanced safety and high efficacy. Nevertheless, efficient and targeted delivery of mRNA molecules remains a significant challenge owing to their inherent instability and susceptibility to degradation. Nanotechnology offers innovative solutions to surmount these obstacles and amplify the potency of mRNA vaccines. This Primer aims to outline a modular approach to developing biomaterials and nanotechnology for mRNA vaccines, with a focus on particle design, formulation evaluation and therapeutic applications. We delve into the underlying mechanisms of nanoparticle-facilitated mRNA protection, cellular uptake, endosomal escape and immune stimulation. We underscore the critical parameters that impact the manufacturing and clinical implementation of nanomaterial-based mRNA vaccines. Finally, we present the current limitations and future perspectives in the advancement of nanotechnology-enhanced mRNA vaccines for broad applications in prophylactic and therapeutic interventions.

摘要

信使核糖核酸(mRNA)疫苗已成为一种革命性工具,可针对传染病和癌症产生快速而精确的免疫反应。与传统疫苗如灭活病毒疫苗、病毒载体疫苗、蛋白质亚单位疫苗或基于DNA的疫苗相比,mRNA疫苗因其多种优势而脱颖而出,包括设计简单、生产快速、安全性增强和疗效高。然而,由于信使核糖核酸分子固有的不稳定性和易降解性,其高效靶向递送仍然是一项重大挑战。纳米技术提供了创新解决方案来克服这些障碍并增强mRNA疫苗的效力。本入门指南旨在概述一种开发用于mRNA疫苗的生物材料和纳米技术的模块化方法,重点是颗粒设计、制剂评估和治疗应用。我们深入探讨了纳米颗粒促进信使核糖核酸保护、细胞摄取、内体逃逸和免疫刺激的潜在机制。我们强调了影响基于纳米材料的信使核糖核酸疫苗制造和临床应用的关键参数。最后,我们阐述了纳米技术增强的信使核糖核酸疫苗在预防性和治疗性干预广泛应用方面当前的局限性和未来前景。

相似文献

1
Nanotechnology-based mRNA vaccines.
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
2
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
10
Innovative gene delivery systems for retinal disease therapy.
Neural Regen Res. 2026 Feb 1;21(2):542-552. doi: 10.4103/NRR.NRR-D-24-00797. Epub 2024 Dec 7.

引用本文的文献

2
Mechanism of RCD and the Role of Different Death Signaling Pathways in Cancer.
Biomedicines. 2025 Aug 2;13(8):1880. doi: 10.3390/biomedicines13081880.
4
Cryomicroneedle Arrays for Biotherapeutics Delivery.
Small Sci. 2025 Jun 8;5(8):2500009. doi: 10.1002/smsc.202500009. eCollection 2025 Aug.
6
Systemic reprogramming of tumour immunity via IL-10-mRNA nanoparticles.
Nat Nanotechnol. 2025 Aug 11. doi: 10.1038/s41565-025-01980-7.
8
Developing mRNA Nanomedicines with Advanced Targeting Functions.
Nanomicro Lett. 2025 Feb 21;17(1):155. doi: 10.1007/s40820-025-01665-9.

本文引用的文献

1
Lipid carriers for mRNA delivery.
Acta Pharm Sin B. 2023 Oct;13(10):4105-4126. doi: 10.1016/j.apsb.2022.11.026. Epub 2022 Nov 30.
2
mRNA-based cancer therapeutics.
Nat Rev Cancer. 2023 Aug;23(8):526-543. doi: 10.1038/s41568-023-00586-2. Epub 2023 Jun 13.
3
Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer.
Nature. 2023 Jun;618(7963):144-150. doi: 10.1038/s41586-023-06063-y. Epub 2023 May 10.
4
mRNA delivery in cancer immunotherapy.
Acta Pharm Sin B. 2023 Apr;13(4):1348-1357. doi: 10.1016/j.apsb.2023.03.001. Epub 2023 Mar 5.
5
A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines.
Nat Biotechnol. 2024 Mar;42(3):510-517. doi: 10.1038/s41587-023-01774-z. Epub 2023 Apr 24.
6
mRNA Vaccine Slows Melanoma Recurrence.
Cancer Discov. 2023 Jun 2;13(6):1278. doi: 10.1158/2159-8290.CD-NB2023-0028.
7
A single-dose F1-based mRNA-LNP vaccine provides protection against the lethal plague bacterium.
Sci Adv. 2023 Mar 10;9(10):eadg1036. doi: 10.1126/sciadv.adg1036. Epub 2023 Mar 8.
9
Effectiveness of Bivalent Boosters against Severe Omicron Infection.
N Engl J Med. 2023 Feb 23;388(8):764-766. doi: 10.1056/NEJMc2215471. Epub 2023 Jan 25.
10
Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.
Nat Rev Mater. 2023;8(4):282-300. doi: 10.1038/s41578-022-00529-7. Epub 2023 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验