Suppr超能文献

重症肺炎患者死亡率的风险预测模型:一项系统评价与荟萃分析

Risk prediction models for mortality in patients with severe pneumonia: a systematic review and meta-analysis.

作者信息

Wang Xiaoyu, Feng Zhenzhen, Wang Lu, Liu Wenrui, Li Jiansheng

机构信息

Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.

The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China.

出版信息

Front Med (Lausanne). 2025 Jul 23;12:1564545. doi: 10.3389/fmed.2025.1564545. eCollection 2025.

Abstract

BACKGROUND

The number of risk prediction models for mortality in patients with severe pneumonia (SP) is increasing, while the quality and clinical applicability of these models remain unclear. This study aimed to systematically review published research on risk prediction models for mortality in patients with SP.

METHODS

PubMed, Embase, Cochrane Library, and Web of Science were searched from inception to August 31, 2024. Data from selected studies were extracted, including study design, participants, diagnostic criteria, sample size, predictors, model development, and performance. The prediction model risk of bias assessment tool was used to assess the risk of bias and applicability. A meta-analysis of the area under the curve (AUC) values from validated models was conducted using Stata 17.0 software.

RESULTS

A total of 22 prediction models from 18 studies were included in this review, including 15 logistic regression models, two cox proportional regression hazards models, two classification and regression trees, one light gradient boosting machine, and one multilayer perceptron. The reported AUC values ranged from 0.713 to 0.952. Seventeen studies were found to have a high risk of bias, primarily due to inappropriate data sources and poor reporting of the analysis domain. The pooled AUC value of five validated models was 0.85 (95% confidence interval: 0.81-0.88), indicating a fair level of discrimination.

CONCLUSION

Although the included studies reported that the risk prediction models for mortality in patients with SP exhibited a certain level of discriminative ability, most of these models were found to have a high risk of bias. Future studies should focus on developing new models with larger sample sizes, rigorous study designs, and multicenter external validation.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024589877, identifier: CRD42024589877.

摘要

背景

用于预测重症肺炎(SP)患者死亡率的风险预测模型数量不断增加,但这些模型的质量和临床适用性仍不明确。本研究旨在系统回顾已发表的关于SP患者死亡率风险预测模型的研究。

方法

检索了PubMed、Embase、Cochrane图书馆和Web of Science数据库,检索时间从建库至2024年8月31日。提取所选研究的数据,包括研究设计、参与者、诊断标准、样本量、预测因素、模型开发和性能。使用预测模型偏倚风险评估工具评估偏倚风险和适用性。使用Stata 17.0软件对验证模型的曲线下面积(AUC)值进行荟萃分析。

结果

本综述共纳入了18项研究中的22个预测模型,包括15个逻辑回归模型、2个Cox比例风险回归模型、2个分类回归树、1个轻梯度提升机和1个多层感知器。报告的AUC值范围为0.713至0.952。发现17项研究存在高偏倚风险,主要原因是数据来源不当和分析领域报告不佳。5个验证模型的合并AUC值为0.85(95%置信区间:0.81-0.88),表明具有一定的区分能力。

结论

尽管纳入的研究报告称,SP患者死亡率的风险预测模型具有一定水平的区分能力,但发现这些模型大多存在高偏倚风险。未来的研究应侧重于开发样本量更大、研究设计严谨且经过多中心外部验证的新模型。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO/view/CRD42024589877,标识符:CRD42024589877。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验