Fenner Madeleine R, Sevim Selim, Wu Guanming, Beavers Deidre, Guo Pengfei, Tang Yucheng, Eddy Christopher Z, Ait-Ahmad Kaoutar, Rice-Stitt Travis, Thomas George, Kuykendall M J, Stavrinides Vasilis, Emberton Mark, Xu Daguang, Song Xubo, Eksi S Ece, Demir Emek
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
bioRxiv. 2025 Jul 17:2025.07.11.664228. doi: 10.1101/2025.07.11.664228.
Cancer tissue analysis in digital pathology is typically conducted across different spatial scales, ranging from high-resolution cell-level modeling to lower-resolution tile-based assessments. However, these perspectives often overlook the structural organization of functional tissue units (FTUs), the small, repeating structures which are crucial to tissue function and key factors during pathological assessment. The incorporation of FTU information is hindered by the need for detailed manual annotations, which are costly and time-consuming to obtain. While artificial intelligence (AI)-based solutions hold great promise to accelerate this process, there is currently no comprehensive workflow for building the large, annotated cohorts required. To remove these roadblocks and advance the development of more interpretable approaches, we developed MiroSCOPE, an end-to-end AI-assisted platform for annotating FTUs at scale, built on QuPath. MiroSCOPE integrates a fine-tunable multiclass segmentation model and curation-specific usability features to enable a human-in-the-loop system that accelerates AI annotation by a pathologist. The system is used to efficiently annotate over 71,900 FTUs on 184 prostate cancer hematoxylin and eosin (H&E)-stained tissue samples and demonstrates ready translation to breast cancer. Furthermore, we publicly release a dataset named Miro-120, consisting of 120 prostate cancer H&E with 30,568 annotations, which can be used by the community as a high-quality resource for FTU-level machine learning aims. In summary, MiroSCOPE provides an adaptable AI-driven platform for annotating functional tissue units, facilitating the use of structural information in digital pathology analyses.
数字病理学中的癌症组织分析通常在不同空间尺度上进行,从高分辨率的细胞水平建模到低分辨率的基于切片的评估。然而,这些视角往往忽略了功能组织单元(FTU)的结构组织,FTU是对组织功能至关重要的小型重复结构,也是病理评估中的关键因素。获取FTU信息受到详细手动注释需求的阻碍,而获取这些注释既昂贵又耗时。虽然基于人工智能(AI)的解决方案有望加速这一过程,但目前还没有构建所需大规模注释队列的全面工作流程。为了消除这些障碍并推动更具可解释性方法的发展,我们开发了MiroSCOPE,这是一个基于QuPath构建的端到端AI辅助平台,用于大规模注释FTU。MiroSCOPE集成了一个可微调的多类分割模型和特定于整理的可用性特征,以实现一个人工参与的系统,加速病理学家的AI注释。该系统用于高效注释184个前列腺癌苏木精和伊红(H&E)染色组织样本上的71,900多个FTU,并证明可以直接应用于乳腺癌。此外,我们公开发布了一个名为Miro-120的数据集,该数据集由120个前列腺癌H&E样本组成,带有30,568个注释,社区可以将其用作FTU级机器学习目标的高质量资源。总之,MiroSCOPE提供了一个适应性强的AI驱动平台,用于注释功能组织单元,促进数字病理学分析中结构信息的使用。